
4. The BBC BASIC Assembler 

There are two main ways of writing ARM assembly language programs. One is to use a 
dedicated assembler. Such a program takes a text file containing ARM assembly language 
instructions, assembles it, and produces another file containing the equivalent machine 
code. These two files are called the source files and object files respectively. 

An alternative approach is to use the assembler built-in to BBC BASIC. The ability to mix 
assembler with BASIC is a very useful feature of the language, and one that is relatively 
straightforward to use. For this reason, and because of the widespread availability of BBC 
BASIC, we describe how to use its built-in assembler. The examples of the next two 
chapters are also in the format expected by the BASIC assembler. 

4.1 First principles 

Two special 'statements' are used to enter and exit from the assembler. The open square 
bracket character, [, marks the start of assembly language source. Whenever this character 
is encountered where BASIC expects to see a statement like PRINT or an assignment, 
BASIC stops executing the program and starts to assemble ARM instructions into machine 
code. The end of the source is marked by the close square bracket, ]. If this is read where 
BASIC is expecting to see an instruction to be assembled, it leaves assembler mode and 
starts executing the (BASIC) program again. 

To see the effect of entering and leaving the assembler, type in this short program: 

10 PRINT "Outside the assembler"  
20 [ ;In the assembler  
30 ]  
40 PRINT "Outside the assembler" 

If you RUN this, you should see something like the following: 

Outside the assembler 
00000000 ;In the assembler  
Outside the assembler 

Between the two lines produced by the PRINT statements is one which the assembler 
printed. Unless you tell it not to, the assembler prints an assembly listing. We shall 
describe this in detail, but for now suffice is to say that it consists of three parts: an address 
(the eight zeros above, which may be different when you run the program), the machine 
code instruction in hex, and the source instruction being assembled. 

In our example above, no instructions were assembled, so no machine code was listed. The 
only line of source was a comment. The semi-colon, ;, introduces a line of comment to the 
assembler. This acts much as a REM in BASIC, and causes the text after it to be ignored. The 

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

1 of 21



comment was indented somewhat in the assembly listing, as the assembler leaves space 
for any machine code which might be produced. 

The address printed at the start of the line is called the location counter. This tells us two 
things: where the assembler is placing assembled machine code instructions in memory, 
and what the value of the program counter (PC) will be when that instruction is fetched 
for execution, when the program finally comes to be run. Because we are not assembling 
any instructions, no code will be written to memory, so it doesn't matter what the location 
counter's value is. Normally, though, when you assemble code, you should set the location 
counter to some address where the assembler may store the machine code. 

It is easy to set the location counter, as it is stored in the system integer variable P%. If you 
enter the immediate statement: 

PRINT ~P% 

you will see the same figures printed as at the start of the middle line above (except for 
leading zeros). 

Let us now assemble some actual code. To do this, we need to reserve some storage for the 
object code. This is easily done using the form of DIM which reserves a given number of 
bytes. Type in the following:  

10 DIM org 40 
20 P% = org 
30 [ ;A simple ARM program 
40 MOV R0,#32 
50.LOOP 
60 SWI 0 
70 ADD R0,R0,#1 
80 CMP R0,#126 
90 BNE LOOP 
100 MOV R15,R14 
110 ] 

It may seem strange using the variable org in the DIM, then using it only once to set P%, but 
we shall see the reason for this later. Note that the DIM statement returns an address which 
is guaranteed to be aligned on a word boundary, so there is no need to 'force' it to be a 
multiple of four. 

As in the previous example, the first line of the assembler is a comment. The next seven 
lines though are actual assembly language instructions. In fact, you may recognise the 
program as being very similar to the example given at the end of Chapter One. It is a 
simple loop, which prints the character set from ASCII 32 (space) to ASCII 126 (tilde or ~). 

The lines which are indented by a space are ARM mnemonics, followed by their operands. 
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When the assembler encounters these, it will convert the instruction into the appropriate 
four-byte machine code, and then store this at the current location counter - P%. Then P% 
will be increased by four for the next instruction. 

Line 50, which starts with a ., is a label. A label is a variable which marks the current place 
in the program. When it encounters a label, the assembler stores the current value of the 
location counter into the variable, so that this place in the program may be accessed in a 
later instruction. In this case the BNE at line 90 uses the label LOOP to branch back to the SWI 
instruction. Any numeric variable may be used as a label, but by convention floating point 
variables (without % sign) are used. Every label in a program should have a unique name. 
This isn't hard to achieve as BBC BASIC allows very long names. 

If you RUN the program, another assembly listing will be produced, this time looking like: 

000167C8 ;A simple ARM program 
000167C8 E3A00020 MOV R0,#32 
000167CC .LOOP  
000167CC EF000000 SWI 0 
000167D0 E2800001 ADD R0,R0,#1 
000167D4 E350007E CMP R0,#126 
000167D8 1AFFFFFB BNE LOOP 
000167DC E1A0F00E MOV R15,R14 

The first column is the location counter, and in the listing above, we can see that the first 
machine instruction was placed at address &167C8. Next is the hex representation of that 
instruction, i.e. the code which will actually be fetched and executed by the processor. You 
can verify that this is what was stored by the assembler by typing in: 

PRINT ~!&167C8 

(The address should be whatever was printed when you ran the program.) You will see 
E3A00020, as in the listing. 

In the third column is the label for that instruction, or spaces if there isn't one, followed by 
the rest of the line, as typed by you.  

To see the fruits of you labours, type the command:  

CALL org 

The ASCII character set of the machine will be printed. The CALL statement takes the 
address of a machine code routine, which it then executes. The machine code is called as if 
a BL instruction had been used with the address given as the operand. Thus to return to 
BASIC, the return address in R14 is transferred to R15 (the PC) as in the example above.  

We will have more to say about using CALL (and the associated function USR) later in this 
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chapter. 

4.2 Passes and assembly options 

Frequently, a label is defined after the place (or places) in the program from which it is 
used. For example, a forward branch might have this form: 

100 CMP R0,#10  
110 BNE notTen  
120 ; some instructions  
130 ; ...  
140.notTen 

In this example, the label notTen has not been encountered when the instruction at line 110 
is assembled. It is not defined until line 140. If this or a similar sequence of instructions 
were encountered while assembling a program using the method we have already 
described, a message of the type 'Unknown or missing variable' would be produced. 

We clearly need to be able to assemble programs with forward references, and the BBC 
BASIC assembler adopts the same approach to the problem as many others: it makes two 
scans, or passes, over the program. The first one is to enable all the labels to be defined, 
and the second pass assembles the code proper. 

In the BASIC assembler we tell it to suppress 'errors' during the first pass by using the OPT 
directive. A directive (or pseudo-op as they are also called) is an instruction which doesn't 
get converted into machine code, but instead instructs the assembler to perform some 
action. It is used in the same place as a proper instruction. 

The OPT directive is followed by a number, and is usually placed immediately after the [, 
but can in fact be used anywhere in the source code. The number is interpreted as a three-
bit value. Bit zero controls the assembly listing; bit one controls whether 'Unknown or 
missing variable' type errors are suppressed or not, and bit two controls something 
called offset assembly, which we shall come to later. The eight possible values may be 
summarised as below: 

Value Offset assembly Errors given Listing 
0 No No No

1 No No Yes

2 No Yes No

3 No Yes Yes

4 Yes No No

5 Yes No Yes
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If you don't use OPT at all, the default state is 3 - offset assembly is not used; errors are not 
suppressed, and a listing is given. 

The most obvious way to obtain the two passes in BASIC is to enclose the whole of the 
source code in a FOR...NEXT loop which performs two iterations. Often, the code is 
enclosed in a procedure so that the FOR and NEXT of the loop can be close together. The 
desired assembly option can then be passed as a parameter to the procedure. 

Below is an example following the outline described above. The program contains a 
forward reference to illustrate the use of two passes. The listing is produced in the second 
pass (as it always should be if there are two passes), so the values given to OPT are 0 and 3 
respectively. 

1000 REM Example of two-pass assembly 
1010 DIM org 100 
1030 FOR pass=0 TO 3 STEP 3 
1040 PROCasm(pass,org) 
1050 NEXT pass 
1060 END 
1070  
2000 DEF PROCasm(pass,org)  
2010 P%=org 
2020 [ OPT pass 
2030 .loop 
2040 SWI 4 ;Read a char 
2050 MOVS R0,R0,ASR#1 
2055 MOVEQ R15, R14 
2060 BCC even 
2070 SWI 256+ASC"O" ;Print O 
2080 B loop 
2090 .even 
2100 SWI 256+ASC"E" ;Print E 
2110 B loop 
2120 ] 
2130 ENDPROC 

The most important thing to notice is that the P% variable is set at the start of each pass. If 
you only set it at the start of the first pass, by the end of the first pass it will contain the 
address of the end of the code, and be incorrect for the start of the second pass. 

The program is fairly trivial. It reads characters from the keyboard and prints E if the 
character has an even ASCII code, or O if not. This repeats until an ASCII character 0 or 1 
(CTRL @ or CTRL A) is typed. The branch to even at line 2060 is a forward one; during the 
first pass the fact that even hasn't been defined yet is ignored, then during the second pass, 
its value - set in line 2090 - is used to address the following SWI. 

6 Yes Yes No

7 Yes Yes Yes
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In fact, because of the ARM's conditional instructions, this program could have been 
written without any forward branches, by making lines 2070 and 2080: 

2070 SWICS 256+"O" ;Print O  
2080 SWICC 256+"E" ;Print E 

and deleting lines 2090 and 2100. It's always hard thinking of simple but useful ways of 
illustrating specific points. 

You should be aware of what actually happens when a forward reference is encountered 
in the first pass. Instead of giving an error, the assembler uses the current value of the 
location counter. In line 2060 above, for example, the value returned for the undefined 
variable is the address of the BCC instruction itself. If only the first pass was performed and 
you tried to call the code, an infinite loop would be caused by this branch to itself. It is 
important, therefore, that you always set bit 1 of the OPT value during the second pass, to 
enable errors to be reported, even if you don't bother about the listing. 

4.3 Program style and readability 

Any experienced assembler language programmer reading this chapter will probably be 
thinking by now, 'What a load of rubbish.' The examples presented so far are not, it must 
be admitted, models of clarity and elegance. This was deliberate; it gives us a chance to 
point out how they are deficient and how these deficiencies may be remedied. 

As we learned in Chapter One, assembly language is about as far from the ideal as a 
normal human programmer is likely to venture. When writing an assembly language 
program, you should therefore give your reader as much help as possible in 
understanding what is going on. Bear in mind that the reader may well be you, so it's not 
just a question of helping others. 

Comments are the first line of attack. As we have seen, comments may appear as the first 
(and only) thing on the line, or after the label, or after the label and instruction. A 
comment may not come between the label and instruction, as the instruction will be 
ignored, being taken as part of the comment. We have used ; to introduce comments, as 
this is the same character that many other assemblers use. The BBC BASIC assembler also 
allows you to use \ and REM. Whatever you use, you should be consistent. 

A comment should be meaningful. The comments at the start of a routine should explain 
what it does, what the entry and exit conditions are, and what the side -effects are. Entry 
and exit conditions usually pertain to the contents of the ARM registers when the routine 
is called and when it returns, but may also include the state of specific memory locations 
at these points too.  
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The side-effects of a routine are similar to saying what it does, but are more concerned 
with actions which might affect the operation of other routines. A common side -effect is 
that of corrupting certain registers. Another example might be a routine which prints a 
character on the screen as its main action, but corrupts a pointer in RAM as a side-effect. 
By documenting these things in comments, you make it much easier to track down bugs, 
and to interface your routines to each other. 

From the remarks above, it can be seen that the routines presented above are poorly 
served with comments, and this makes it more difficult to understand them, even though 
they are quite short. 

Another important way of increasing readability is to use names instead of numbers. 
Examples where this clouded the issue in earlier programs are: 

80 CMP R0,#126 

2040 SWI 4 ;Read a char 

Admittedly the second example has a comment which gives the reader some idea, but the 
first one is totally meaningless to many people. In the BBC BASIC assembler, wherever a 
number is required in an operand, the full power of the BASIC expression evaluator is 
available. The most obvious way to utilise this is to use variables as names for 'magic' 
numbers. For example, in the character program, we could have included an assignment 

17 maxChar = ASC"~" 

and made line 80: 

80 CMP R0, #maxChar 

In the first place we are told in line 17 what the last character to be printed is, and secondly 
the name maxChar gives a much better indication in line 80 of what we are comparing. 

In the second example, the operand to SWI was a code number telling the operating system 
what routine was desired. This was the read character routine which goes by the name of 
ReadC. So the program can be made more readable by adding the line: 

1005 ReadC = 4 : REM SWI to read a char into R0 

and changing line 2040 to:  

2040 SWI ReadC 

which makes the comment redundant. The SWI 256 is another instruction that can be 
improved. This particular SWI has an operand of the form 256+ch, where ch is the code of 
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character to be printed. It is given the name WriteI (for write immediate) in Acorn 
documentation, so we could have an assignment like this:  

1007 WriteI=&100 : REM SWI to write char in LSB of operand 

and change the instructions to have the form: 

2070 SWI WriteI+ASC"O" 

The importance of giving names to things like SWI codes and immediate operands cannot 
be understated. A similarly useful tool is naming registers. So far we have used the 
denotations R0, R1 etc. to stand for registers. In addition to these standard names, the 
assembler accepts an expression which evaluates to a register number. An obvious 
application of this is to give names to important registers such as the SP by assigning the 
appropriate register number to a variable. For example, if we had these three assignments 
in the BASIC part of a program: 

10 link = 14 : REM BL link register  
20 sp = 13 : REM My stack pointer register 
30 acc = 5 : REM Accumulator for results 

then instructions could take the form: 

1000 MOVCS pc,link ;Return if too big 

1210 STM (sp)!,{acc,link} ;Save result and return addr 

2300 LDM (sp)!,{acc,pc} ;Return and restore 

There are two things to note about these examples. The first is that we use the name pc 
even though this wan't one of the variables we defined above. The BASIC assembler 
recognises it automatically and substitutes R15. The second is that sp has brackets around 
it. These are required because the ! sign is used by BASIC to denote 'indirection'. To stop 
BASIC from getting confused you have to put brackets around any variable name used 
before a ! in STM and LDM instructions. You don't need the brackets if a register name, such 
as R13, is used. 

In the examples in this book, we use the names pc, link and sp as shown above, and we 
also use names for other registers where possible. There is no confusion between register 
numbers and immediate operands, of course, because the latter are preceded by a # sign. 
So: 

4310 MOV acc,sp 

copies the contents of register sp (i.e. R13) to register acc, whereas: 
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4310 MOV acc,#sp 

would load the immediate value 13 into the acc register. 

The final point about style concerns layout. The assembler doesn't impose too many 
constraints on the way in which you lay out the program. As we have already mentioned, 
labels must come immediately after the line number, and comments must appear as the 
last (and possibly only) thing on the line. However, it is advisable to line up the columns 
where possible. This makes it easier to follows comments if nothing else. Comments 
describing individual routines or the whole program can be placed at the start of the line. 
This also applies to comments for instructions which wouldn't fit on the line easily (e.g. 
after an STR with a long register list). 

Line spacing can also be important. It is a good idea to leave blank lines between routines 
to separate them. 

A typical format would be: ten spaces for the label, 25 for the instruction, and the rest of 
the line for the comment. For example: 

1230 MOV count, #15 ;Init the counter 
1240.loop SWI writeI+ASC"*" ;Print an asterisk 
1250 SUB count, #1 ;Next count  
1260 BNE loop 

Another minor point of style in the listing above is the spacing of operands. It is easier to 
separate operands if there is at least one space character between them. 

By way of a simple contrast, we list the very first program of this chapter, trying to 
practise that which we have just been preaching. 

10 DIM org 40 
20 P% = org 
30 outReg = 0 : REM Register use by WriteC. Preserved 
40 link = 14 : REM BL link register  
50 pc = 15 : REM ARM program counter 
60 WriteC = 0 : REM SWI code to print char in R0 
70 firstChar = ASC" " 
80 lastChar = ASC"~" 
90 [ 
100 ;A simple ARM program. This prints the ASCII 
110 ;character set from 'firstChar' to 'lastChar' 
120 MOV outReg, #firstChar ;Init the output char 
130.loop 
140 SWI WriteC ;Display the char. 
150 ADD outReg, outReg, #1 ;Increment the character 
160 CMP outReg, #lastChar ;Finished? 
170 BNE loop ;No so loop 
180 MOV pc, link ;else return 
190 ] 
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Because the line numbers are not particularly relevant to the assembly language, listings in 
subsequent chapters don't use them. 

Finally, a note on cases. The assembler is totally case-insensitive. Mnemonics and 'R's in R0 
etc. may be in upper or lower case or any combination thereof. Labels, however, must 
obey the rules of the rest of BASIC, which state that variable names are case dependent. 
Thus LOOP is a different label from loop, and Loop is again different. The convention used 
in this book is upper case for mnemonics and R0-type designations, and a mixture of 
upper and lower case (e.g. strPtr) for labels and other names. As usual, the method you 
adopt is up to you, consistency being the important thing. 

4.4 Offset assembly 

The facility of offset assembly was mentioned above. It is enabled by bit 2 of the OPT 
expression. When offset assembly is used, the code is still assembled to execute at the 
address in the P% variable. However, it is not stored there. Instead, it is placed at the 
address held in the O% variable.  

Motivation for offset assembly can be explained as follows. Suppose you are writing a 
program which will load and execute at address &8000. Now, using DIM to obtain code 
space, you find you can only obtain addresses from about &8700 up. You could set P% 
explicitly to &8000, but as this is where the BASIC interpreter's workspace lies, you will be 
in dire danger of overwriting it. This invariably leads to unpleasantness. 

The solution to this dilemma is to still assign P% to &8000, as if it is going to execute there, 
but use offset assembly to store the machine code at some conveniently DIMmed location. 
Here is the outline of a program using offset assembly, without line numbers.  

org = &1000 : REM Where we want the code to run 
DIM code 500 : REM Where the code is assembled to 
code$= " "+STR$~code+" " 
org$ = " "+STR$~org+" " 
FOR pass=4 TO 6 STEP 2 
P%=org 
O%=code 
[ OPT pass 
;The lines of the program come here 
;... 
;...  
] 
NEXT pass 
OSCLI "SAVE PROG "+code$+STR$~O%+org$+org$ 

Both P% and O% are set at the start of each pass. Because bit 2 of the pass looping value is 
set, offset assembly will take place and the assembled code will actually be stored from the 
address in code. Once assembled, the code is saved with the appropriate load and 
execution addresses, and could be activated using a * command. 

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

10 of 21



When using offset assembly, you shouldn't use CALL to test the machine code, as it will be 
assembled to execute at an address different from the one in which it is stored. 

Having illustrated the use of offset assembly, we will now say that you should rarely have 
to use it. As the next chapter tries to show, it is quite easy to write ARM programs which 
operate correctly at any load address. Such programs are called position independent, and 
there are a few simple rules you have to obey in order to give your programs this desirable 
property. 

Overleaf is a version of the outline listing above, assuming that the program between the 
[ and ] statements is position independent. 

org = &1000 : REM Where we want the code to run 
DIM code 500 : REM Where the code is assembled to 
code$= " "+STR$~code+" " 
org$ = " "+STR$~org+" " 
FOR pass=0 TO 2 STEP 2 
P%=code 
[ OPT pass 
;The lines of the program come here 
;... 
;... 
] 
NEXT pass 
OSCLI "SAVE PROG "+code$+STR$~P%+org$+org$ 

The differences are that O% doesn't get a mention, and the values for the OPT directive are 
0 and 2 respectively. The value of org is used only to set the load and execution addresses 
in the SAVE command. 

In the light of the above, you may be wondering why offset assembly is allowed at all. It is 
really a carry-over from early versions of BBC BASIC, running on the BBC Micro. These 
incorporated assemblers for the old-fashioned 6502 processor that the BBC machine used. 
It is virtually impossible to write position independent code for the 6502, so offset 
assembly was very useful, especially for those writing 'paged ROM' software. 

There is still one valid use for offset assembly, and that is in defining areas of memory for 
data storage. We shall describe this in the next section. 

4.5 Defining space 

Most programs need some associated data storage area. This might be used for constant 
data, such as tables of commands, or for holding items such as character strings (filenames 
etc.) or arrays of numbers which won't fit in the ARM's registers. There are four assembler 
directives which enable you to reserve space in the program for data. They are called:  

EQUB - Reserve a byte  
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EQUW - Reserve a word (two bytes)  
EQUD - Reserve a double word (four bytes)  
EQUS - Reserve a string (0 to 255 bytes) 

The reference to a 'word' being two bytes may be confusing in the light of our earlier 
claims that the ARM has a 32-bit or four-byte word length. Like offset assembly, the 
notation has its origins in the murky history of BBC BASIC. It's probably best to forget 
what the letters stand for, and just remember how many bytes each directive reserves.  

Each of the directives is followed by an expression, an integer in the first three cases, and a 
string in the last. The assembler embeds the appropriate number of bytes into the machine 
code, and increments P% (and if necessary O%) by the right amount. 

Here is an example of using EQUB. Suppose we are writing a VDU driver where control 
characters (in the range 0..31) may be followed by 1 or more 'parameter' bytes. We would 
require a table which, for each code, gave us the parameter count. This could be set-up 
using EQUB as below: 

.parmCount 
; This table holds the number of parameters bytes 
; for the control codes in the range 0..31 
EQUB 0 ;NUL. Zero parameters 
EQUB 1 ;To Printer. One parm. 
EQUB 0 ;Printer on. Zero parms. 
EQUB 0 ;Printer off. Zero parms 
.... .... 
.... .... 
EQUB 4 ;Graf origin. Four bytes  
EQUB 0 ;Home. No parameters 
EQUB 2 ;Tab(x,y). Two parms. 
; End of parmCount table 
;  

Each of the EQUBs embeds the count byte given as the operand into the machine code. Then 
P% is moved on by one. In the case of EQUW, the two LSBs of the argument are stored 
(lowest byte first) and P% incremented by two. For EQUD, all four bytes of the integer 
operand are stored in standard ARM order (lowest byte to highest byte) and P% is 
incremented by 4. 

There are a couple of points to note. We are storing data in the object code, not 
instructions. Therefore you have to ensure that the program will not try to 'execute' the 
bytes embedded by EQUB etc. For example, if there was code immediately before the label 
parmCount above, there should be no way for the code to 'drop through' into the data area. 
The result of executing data is unpredictable, but invariably nasty. For this reason it is 
wise to separate 'code' and 'data' sections of the program as much as possible. 

Secondly, in the example above we embedded 32 bytes, which is a multiple of four. So 
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assuming that P% started off on a word boundary, it would end up on one after the list of 
EQUBs. This means that if we started to assemble instructions after the table, there would be 
no problem. Suppose, however, that we actually embedded 33 bytes. After this, P% would 
no longer lie on a word boundary, and if we wanted to start to assemble instructions after 
the table, some corrective action would have to be taken. The ALIGN directive is used to 
perform this. 

You can use ALIGN anywhere that an instruction can be used. Its effect is to force P% and 
O% to move on to the next word boundary. If they already are word-aligned, they are not 
altered. Otherwise, they are incremented by 1, 2 or 3 as appropriate, so that the new values 
are multiples of four. 

The string directive, EQUS, enables us to embed a sequence of bytes represented by a BBC 
BASIC string into memory. For example, suppose we had a table of command names to 
embed in a program. Each name is terminated by having the top bit of its last letter set. We 
could set-up such a table like this: 

.commands 
; Table of commands. Each command has the top bit 
; of its last char. set. The table is terminated 
; by a zero byte. 
EQUS "ACCES"+CHR$(ASC"S"+&80) 
EQUS "BACKU"+CHR$(ASC"P"+&80) 
EQUS "COMPAC"+CHR$(ASC"T"+&80) 
.... 
.... 
EQUS "TITL"+CHR$(ASC"E"+&80) 
EQUS "WIP"+CHR$(ASC"E"+&80) 
; 
EQUB 0 
ALIGN 
; End of command table 

Note the use of the ALIGN directive at the end of the table. 

The examples presented so far have shown initialised memory being set-up, that is 
memory which contains read-only data for use by the program. The need to reserve space 
for initialised memory also arises. For example, say a program uses an operating system 
routine to load a file. This routine might require a parameter block in memory, which 
contains all of the data necessary to perform the load. To reserve space for the parameter 
block, a sequence of EQUDs could be used: 

.fileBlock 
; This is the parameter block for the file load operation 
; 
.namePtr EQUD 0 ; Pointer to the filename 
.loadAddr EQUD 0 ; The load address of the file 
.execAddr EQUD 0 ; The execution address 
.attributes EQUD 0 ; The file's attributes 
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; 
; 
.doLoad 
; This routine sets up the file block and loads the file 
; It assumes the name is on the stack 
; 
STR sp, namePtr ; Save the name pointer 
MOV R0, #&1000 ; Get 4K for the file 
SWI getMemory ; Returns pointer in R1 
STR R1, loadAddr ; Save the address 
; Get the address of the parameter block in R0 
ADR R0, fileBlock 
MOV R1, #loadCode ; Command code for SWI 
SWI file ; Do the load 
... 

The EQUDs to set up the parameter block do not have meaningful operands. This is because 
they are only being used to reserve memory which will be later filled in by the program. 
Each EQUD has a label so that the address of the four-byte area reserved can be accessed by 
name. 

Following the set-up directives is some code which would use such a parameter block. It 
uses some hypothetical SWI calls to access operating system routines, but you can assume 
that similar facilities will be available on any ARM system you are likely to use. Some of 
the instructions may not be very clear at this stage, but you might like to come back and 
re-examine the example having read the next two chapters.  

The ADR instruction isn't an ARM mnemonic, but is a directive used to load a register with 
an address. The first operand is the register in which the address is to be stored. The 
second operand is the address to be loaded. The directive is converted into one of these 
instructions: 

ADD reg,pc,#addr-(P%+8) or 

SUB reg,pc,#(P%+8)-addr 

The first form is used if the addr is after the directive in the program, and the second form 
is used if addr appears earlier, as in the example above. The idea of using the directive is to 
obtain the required address in a position-independent manner, i.e. in a way which will 
work no matter where the program is executing. We say more about position-
independence in Chapter Five. 

To reserve space for items larger than double words, you can use EQUS. The operand 
should be a string whose length is the required number of bytes. The BASIC STRING$ 
function provides a good way of obtaining such a string. The example below reserves two 
32-byte areas: 

.path1 EQUS STRING$(32,CHR$0) ;32 bytes for filename1 
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.path2 EQUS STRING$(32,CHR$0) ;32 bytes for filename2 

By making the second operand of STRING$ CHR$0, the bytes embedded will by ASCII 0. As 
this is an illegal filename character, it can be used to guard against the program omitting 
to initialise the strings before using them. 

In each of the examples above, the directives were used to reserve storage inside the 
machine code of the assembly language program. Another use is in defining labels as 
offsets from the start of some work area. For example, we may use register R10 as a 
pointer to a block of memory where we store important, frequently accessed data (but 
which doesn't fit in the registers). The LDR group of instructions would be used to access 
the data, using immediate offsets. Suppose the structure of the data is thus: 

The data items are the sort of thing that a BASIC interpreter would store in its data area. 
Notice that all of the word-length items are stored in one group so that they remain word 
aligned. One way of assigning the offsets in the BBC BASIC assembler would be with 
assignments: 

page = 0 
top = page+4 
lomem = top+4 
vartop = lomem+4 
count = vartop+4 
errptr = count+4 
strlen = errptr+4 
listo = strlen+1 
opt = listo+1 
....= opt+1 

This method has a couple of drawbacks. First, to find out how many bytes have been 
allocated to a given item, you have to look at two lines and perform a subtraction. 

Offset Item Bytes 

&00 Program pointer 4

&04 Top of program 4

&08 Start of variables 4

&12 End of variables 4

&16 Character count 4

&20 ON ERROR pointer 4

&24 String length 1

&25 List option 1

&26 OPT value 1

&27 ... 1
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Similarly, to insert a new item, two lines have to be amended. Even worse, the actual 
values assigned to the labels can't be discovered without printing them individually - they 
don't appear in the assembly listing. 

To overcome these drawbacks, we use the assembler's offset assembly ability. The method 
is illustrated below: 

DIM org 1000 : REM Enough for code and data declarations FOR pass=0 TO 2 STEP 2 
PROCdeclarations(org,pass) 
PROCasm(org,pass) 
NEXT  
END 

DEF PROCdeclarations(org,pass) 
P%=0 : O%=org 
[ OPT pass + 4 
.page EQUD 0 
.top EQUD 0 
.lomem EQUD 0 
.vartop EQUD 0 
.count EQUD 0 
.errptr EQUD 0 
.strlen EQUB 0 
.listo EQUB 0 
.opt EQUB 0 
... EQUB 0 
] 
ENDPROC 

DEF PROCasm(org,pass) 
P%=org 
[ OPT pass 
.... 

The procedure PROCdeclarations contains the EQU directives which define the space for 
each item. By adding 4 to the pass value, offset assembly is used. Setting P% to zero means 
that the first label, page, will have the value zero; top will be set to 4, and so on. O% is set 
to org originally so that the bytes assembled by the directives will be stored in the same 
place as the program code. As PROCasm is called after PROCdeclarations, the code will 
overwrite the zero bytes. 

When this technique is used, the addresses of the labels appear in the assembly listing 
(using FOR pass=0 TO 3 STEP 3); it is easier to see how many bytes each item occupies (by 
seeing which directive is used), and adding a new item is simply a matter of inserting the 
appropriate line. 

4.6 Macros and conditional assembly 

Sometimes, a sequence of instructions occurs frequently throughout a program. An 
example is setting up a table. Suppose we have a table which consists of 32 entries, each 
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containing a branch instruction and three items of data, a two byte one and two single byte 
items. To set up the table, we could have a list of 32 instruction sequences, each of the 
form: 

B address 
EQUW data1 
EQUB data2 
EQUB data3 

Typing in these four lines 32 times might prove a little laborious, and possibly error-prone. 

Many dedicated assemblers provide a facility called macros to make life a little easier in 
situations like the one described above. A macro can be viewed as a template which is 
defined just once for the sequence. It is then 'invoked' using a single-line instruction to 
generate all of the instructions. The BBC BASIC assembler implements macros in a novel 
way, using the user-defined function keyword, FN. 

If the assembler encounters an FN where it is expecting to find a mnemonic, the function is 
called as usual, but any result it returns is disregarded. Once you are in FN, you have the 
whole power of BASIC available. This includes the assembler, so you can start to assemble 
code within the FN. This will be added to the machine code which was already assembled 
in the main program. 

To clarify the situation, we will implement a macro to make a table entry of the type 
described above.  

10000 DEF FNtable(address,data1,data2,data3) 
10010 [ OPT pass 
10020 B address 
10030 EQUW data1 
10040 EQUB data2 
10050 EQUB data3 
10060 ] 
10070 ="" 

As you can see, the 'body' of the macro is very similar to the list of instructions given 
earlier. The macro is defined in a separate part of the program, outside of the main 
assembly language section (hence the very high line number). It assumes that the looping 
variable used to control the passes of the assembler is called pass, but this could have been 
given as an extra parameter. 

To call the macro, an FNtable call is used, one for each entry in the table. A typical 
sequence might look like this:  

1240 FNtable(list,1,2,3) 
1250 FNtable(delete,2,3,4) 
1260 FNtable(renumber,1,1,2) 
1270 .... 
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When the FN is reached, the assembler calls the function using the parameters supplied. 
The effect of this is to assemble the instructions and then return. The return value "" is 
disregarded. The net effect of all this is to assemble four lines of code with only one 
instruction. 

Another use of macros is to 'invent' new instructions. For example, instead of always 
having to remember which type of stack you are using (full, empty, ascending or 
descending), you could define a macro which pushes a given range of registers. By always 
using the macro, you also avoid the pitfuls of forgetting the ! to denote write -back. 

The routine below is a macro to push a range of registers onto a full, descending stack, 
using R13. 

10000 DEF FNpush(first,last) 
10010 [ OPT pass 
10020 STMFD R13!,{first-last} 
10030 ] 
10040 ="" 

Another advantage of using a macro to implement a common operation like push is that it 
can be changed just the once to affect all of the places where it is used. Suppose, for 
example, that you have to change your program to use an empty stack, so that it is 
compatible with someone else's program. By simply changing line 10020 above, every 
push operation will use the new type of stack. 

There are situations where you might want to be able to assemble different versions of a 
program, depending on some condition. This is where conditional assembly comes in. 

Using conditional assembly is a bit like IFÉ type operations in BASIC, and that is exactly 
what we use to implement it in the BBC BASIC assembler. The listing overleaf shows how 
the macro FNpush could be written to cope with either a full or empty stack. 

The variable fullStack is a global which is defined at the start of the program to TRUE if we 
are assembling for a full stack and FALSE if we want an empty one. 

10000 DEF FNpush(first,last) 
10010 IF fullStack THEN 
10020 [ OPT pass 
10030 STMFD R13!,{first,last} 
10040 ] 
10050 ELSE 
10060 [ OPT pass 
10070 STMED R13!,{first,last} 
10080 ] 
10090 ENDIF 
10100 ="" 

Most features of dedicated assemblers can be implemented using a combination of BBC 
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BASIC and the BASIC assembler. For example, some assemblers have a WHILE loop 
directive which can be used to assemble repeated instructions which would be tedious 
(and maybe error prone) to type. The BASIC WHILE (or FOR or REPEAT) loops can be used to 
similar effect. The macro below implements a 'fill memory' function. It takes a count and a 
byte value, and stores the given number of bytes in the object code. 

10000 DEF FNfill(byte,count) 
10010 IF count=0 THEN ="" 
10020 LOCAL i 
10030 FOR i=1 TO count 
10040 [ OPT pass 
10050 EQUB byte 
10060 ] 
10070 NEXT i 
10080 [ OPT pass 
10090 ALIGN 
10100 ] 
10110 ="" 

Although we could have quite easily 'poked' the bytes into the code without using EQUB, 
the method we use guarantees that the effect of FNfill shows up on the assembly listing. 
It is important to keep what is printed in the listing consistent with what is actually going 
on, otherwise it becomes difficult to debug programs from the listing. 

4.7 Calling machine code 

Many of the example programs in the next two chapters are accompanied by short test 
routines. These are called from BASIC after the code has been assembled. To help you 
understand these programs, we describe the CALL statement and the USR function in this 
section. 

The format of the CALL statement is: 

CALL <address>,[<parameters>] 

The <address> is the location of the machine code that you want to execute. The optional 
<parameters> are BASIC variables, separated by commas. 

When the called routine starts to execute, it finds its registers set-up by BASIC. We won't 
describe the full extent of what BASIC provides for the machine code program, but instead 
point out the most useful features. First, R0 to R7 are set-up from the values of eight of the 
system integer variables (A% etc). So, R0 holds the contents of A%, R1 is initialised from 
B%, and so on, up to R7 which has been loaded from H%. 

R9 points to the list of parameters, and R10 contains the number of parameters that 
followed the <address>. This may be zero, as the parameters are optional. The data to 
which R9 points is a list of pairs of words. There is one word-pair for each parameter. 
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The first word contains the address of the variable, i.e. where its value is stored in 
memory. The second word holds the type of the variable. From this, the meaning of the 
data addressed by the first word can be determined. The main types are as follows: 

The type-128 string value consists of five bytes. The first four are the address of the 
contents of the string (i.e. the characters), and the fifth byte is the string's length. A type-
129 string is a sequence of bytes terminated by a carriage -return character, and the address 
word points to the first character of the string. Note that the data values can have any 
alignment, so to access them you must use a general-alignment routine of the type 
presented in Chapter Six. 

It is important to realise that the word-pairs describing parameters are in reverse order. 
This means that the word pointed to by R9 is the address of the last parameter's value. The 
next word is the type of the last parameter, and the one after that is the address of the 
penultimate parameter, and so on. Obviously if there is only one parameter, this rerversal 
does not matter. 

The final registers of importance are R13, which is BASIC's stack pointer, and R14, the link 
register. BASIC's (full, descending) stack may be used by the called routine, as long as the 
stack pointer ends up with the same value it had on entry to the routine. R14 contains the 
return address, as if the routine had been called with a BL instruction. This enables the 
routine to return to BASIC with an instruction such as:  

MOV pc,R14 

The USR function is used in a similar way to CALL. There are two important differences. 
First, it cannot take parameters, so a typical use would be: 

PRINT ~USR address 

Second, it returns a result. This result is the contents of R0 on return from the machine 
code. There are several examples of USR in the next two chapters.  

4.8 Summary 

Type Meaning 
0 Single byte, e.g. ?addr

4 Integer, e.g. fred%, !fred, fred%(10)

5 Real, e.g. fred, |fred, fred(10)

128 String, e.g. fred$, fred$(10)

129 String, e.g. $fred
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In this chapter we have looked at one of the assemblers available to the ARM programmer. 
Because it is part of ARM BASIC, it is straightforward to use. Although the assembler itself 
is not overflowing with features, the fact that assembler and BASIC can be freely 
combined has many advantages. It is relatively easy to implement many of the features of 
'professional' assemblers, such as macros and conditional assembly. 

Finally we looked briefly at the CALL and USR keywords in BASIC, in preparation for their 
use in later chapters.  

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

21 of 21


