
7. Non-user Modes 

In the previous chapters, we have restricted ourselves to discussing the ARM while it is 
operating in user mode. For most purposes, this is all that is required. For example, large 
ARM programs such as the BBC BASIC interpreter manage to function entirely in user 
mode. There are times, however, when a program must execute in one of the other modes 
to work correctly. In this chapter, we discuss the characteristics of the non-user modes. 

7.1 Extended programmer's model 

Register set 

As described in Chapter Two, there are four modes in which the ARM may operate. The 
bottom two bits of R15 (called s1 and s0) determine the modes, as summarised below: 

When the ARM is in a non-user mode, its register set differs slightly from the user mode 
model. The numbering of the registers is identical, but some of the higher numbers refer to 
physically distinct registers in modes 1 to 3. The complete register model for all modes is 
shown overleaf. Each column shows the registers which are visible in mode 0, 1, 2 and 3 
respectively. 

The register names without a suffix refer to the user registers that we are used to dealing 
with. As the diagram shows, each of the non-user modes has at least two registers which 
are physically separate from the user mode ones. R14 is the link register, so all modes have 
their own link register, and R13 is traditionally used as the stack pointer, so each mode can 
have its own stack. FIQ mode has five additional private registers. These are provided so 
that important information may be stored in the processor for instant access when FIQ 
mode is entered. 

In Acorn documentation, the term 'supervisor' modes is used to describe all non-user 
modes. We will adopt this convention for the rest of this chapter. Where the actual 
processor mode 3 is meant, the term SVC mode will be used. 

Here is the extended programmer's model: 

s1 s0 Mode 
0 0 0 User (USR)

0 1 1 Fast interrupt (FIQ)

1 0 2 Ineterrupt (IRQ)

1 1 3 Supervisor (SVC)
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Instruction extensions 

Although there are no instructions which can only be used in supervisor mode, the 
operation of some of the instructions already described in earlier chapters does alter 
slightly. These differences are covered for each instruction group below. 

Group one 

Recall that in user mode, only the N, Z, V and C bits of the status register may be altered 
by the data manipulation instructions. The two interrupt mask bits, F and I, and the mode 
bits S0 and S1, may be read, but an attempt to alter them is ignored.  

In supervisor mode, all eight bits of the status register may be changed. In fact, the very 
act of entering a supervisor mode may cause a change in the state of the four special bits. 
For example when a SWI instruction is used to call a supervisor mode routine, S0 and S1 
are set to decimal 3, i.e. SVC mode, and IRQs are disabled by the I bit being set. 

The easiest way to set the F, I, S0 and S1 bits to a required state is to use the TEQP 
instruction. Recall that the instruction: 

TEQP pc,#value 

performs an exclusive-OR of R15 (the PC and status flags) and the immediate value, but 
does not store the result anywhere. Because R15 is acting as a left-hand operand, only the 
PC bits (2 to 25) are used in the calculation, the status bits being set to 0. Furthermore, 
because the P option was specified after TEQ, the result of the exclusive-OR operation on 
bits 0, 1 and 26 to 31 of the operands is stored directly into the corresponding bits of R15. 
Thus the net result of the instruction is to store 1 bits in R15 where the value has one bits, 
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and 0s where value was zero. You could view TEQP instruction as a special 'load status 
register' instruction of the form: 

LDSR #value 

As an example, suppose we are in SVC mode (S0 = S1 = 1) with interrupts disabled (I = 1), 
and want to move to FIQ mode (S0 = 1, S1 = 0) with both types of interrupts disabled (I = F 
= 1). The following instruction would achieve the desired result: 

TEQP pc,#S0_bit + F_bit + I_bit 

The following BASIC assignments would initialise the bit masks for the various status bits, 
such as S0_bit, used above: 

S0_bit = 1 << 1 
S1_bit = 1 << 2 
F_bit = 1 << 26 
I_bit = 1 << 27 
V_bit = 1 << 28 
C_bit = 1 << 29 
Z_bit = 1 << 30 
N_bit = 1 << 31 

The TEQP instruction can only be used to store a given pattern of 1s and 0s into the status 
bits of R15. What we sometimes need is the ability to affect only some bits without altering 
others. This requires more work, as we have to read the current bits, then perform the 
desired operation. Suppose we want to disable both types of interrupts without altering 
the processor mode (i.e. F = I = 1, S0, S1 unchanged). Here is one way: 

MOV temp,pc ;Load current flags 
ORR temp,temp,#F_bit+I_bit ;Set interrupt masks 
TEQP temp,#0 ;Move new flags into R15 

This time, the current flags' states are loaded into a temporary register using the MOV 
instruction. Remember that to read the status part of R15, it must appear as a right-hand 
operand in a group one instruction. The ORR is used to set the I and F bits without altering 
the others. Finally, the TEQP sets the status bits from temp.  

As a final example, suppose we want to return to user mode (S0 = S1 = 0) without altering 
the rest of the flags. We could use the TST instruction to clear S0 and S1, leaving the other 
flags unaltered:  

MOV temp,#N_bit+V_bit+C_bit+Z_bit+I_bit+F_bit 
TSTP temp,pc 

The MOV loads temp with a mask of the bits that are to be unaltered, and the TST does an 
AND of this and the current status register, putting the result in R15, as the P option is 
specified. 
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Group two 

There is only one difference between using LDR and STR in supervisor mode and user 
mode. Recall that the post-indexed instructions of the form: 

LDR <reg>,[<base>],<offset> 

always use write-back, so there is no need to include a ! at the end of the instruction to 
specify it. Well, the bit in the instruction code which would specify write-back is used for 
something else. It is ignored in user mode, but in supervisor mode it affects the state of a 
signal (called SPVMD, described below) which tells peripheral devices if the CPU is 
executing in supervisor or user mode.  

Usually, when the ARM executes an LDR or STR in supervisor mode, the SPVMD signal 
tells the 'outside' world that this is a supervisor mode operation, so that devices like 
memory controllers can decide whether the requested data transfer is legal or not. If the T 
(for translate) option is given in an STR/LDR instruction, the SPVMD signal is set to indicate 
a user mode transfer, even if the CPU is really in supervisor mode. The T option comes 
after the optional byte-mode B flag, for example 

LDRBT R0,[R1],#1 

will load a byte into R0 addressed by R1, after which R1 will be incremented by one. 
Because T is present, the instruction will execute with SPVMD indicating user mode, even if 
the program is actually running in supervisor. 

Note: The T option was included when it was envisaged that user and supervisor mode 
programs would have totally separate address spaces, with the former going through 
address translation and the latter not. As it turns out, the user address space enforced by 
the MEMC chip is actually a sub-set of the supervisor mode address space, so the T option 
is not usually needed. Remember also that its use is only valid with post-indexing, where 
the ! option is not necessary. 

Group three 

The LDM instruction provides the ^ option. If present, this specifies that if R15 is loaded by 
the instruction, the status bits will be overwritten. If the ^ is absent, the status bits of R15 
will be unaffected by an LDM, even if the rest of R15 is loaded. In user mode, only N, Z, V 
and C may be overwritten; in supervisor mode, all the status bits are affected. 

In supervisor mode, the ^ option is relevant even if R15 is not in the set of registers being 
loaded. In this situation, its presence indicates that the user-mode registers should be 
loaded, not the ones relevant to the current mode. So, in FIQ mode, for example, the 
instruction 
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LDMFD sp,{R0-R14}^ 

will load the user-mode registers from memory. However, if R15 was in the list of registers 
to be loaded, the instruction would have its usual effect of loading the registers 
appropriate to FIQ mode set, and the ^ would indicate that the status bits of R15 are to be 
loaded. 

For STM, there is no corresponding need for ^, since all of R15 is always saved if specified in 
the register list. However, in supervisor mode, the presence of ^ in an STM is still relevant. 
Usually, an instruction like: 

STMFD sp,{R0-R15} 

saves all of the registers which are visible in the current mode. For example, if the mode is 
SVC, then R0-R12, R13_SVC, R14_SVC and R15 are used. However, if ^ is specified, all 
registers saved are taken from the user bank, i.e. this instruction 

STMFD sp,{R0-R15}^ 

would cause R0-R15, all from the user bank of registers, to be saved. 

Note that if write-back were specified in such an instruction, then the updated index 
register would be written back to the user bank instead of the appropriate supervisor 
mode bank. Therefore you should not specify write-back along with ̂  when using the STM 
instruction from a supervisor mode. 

Group four 

The only difference between using branches in user and supervisor mode is that, in BL, the 
link register (R14) appropriate to the current mode is used instead of the user R14. This is 
as expected, and does not require any special attention. 

Group five 

When a SWI instruction is executed, the return address and flags are stored in R14_SVC. 
This means that when SWI is used from any mode other than SVC, no precautions are 
required to save R14 before the SWI is called. However, in SVC mode, executing a SWI will 
overwrite the current contents of R14_SVC. Therefore, this register should be preserved 
across calls to SWI if its contents are important. 

To illustrate this, suppose a routine written to execute in user mode contains a call to the 
operating system's write character routine, but no other subroutine calls. It could be 
written thus: 

;do some stuff 
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SWI WriteC ;Print char, R14_USR is preserved 
;do some more stuff 
MOV pc,link ;Return using R14 

If the same routine is executed in SVC mode, the SWI WriteC would cause the return 
address in R14_SVC to be over written. The routine would have to be coded thus to work 
correctly: 

STMFD (sp)!,{link} ;Save return address 
;do some stuff 
SWI WriteC ;Print char, R14_SVC is corrupt 
;do some more stuff 
LDMFD (sp)!,{pc} ;Return using stacked address 

Memory map 

We have mentioned previously that some ARM systems are fitted with a memory 
controller (MEMC) which, amongst other things, translates addresses emanating from the 
CPU, performing a mapping from logical addresses to physical addresses. It also controls 
the access to other devices, for example ROM and I/O. MEMC controls the access of 
various parts of the memory map, restricting the operations which can be performed in 
user mode. The SPVMD signal produced by the ARM CPU tells the MEMC if the ARM is 
in supervisor mode or not. This enables MEMC to enforce a 'supervisor mode only' rule 
for certain locations.  

Recall that the bottom 32M bytes of the address space is allocated to 'logical' RAM. This is 
divided into pages of between 8K and 32K bytes, up to 128 of them being present. Each 
page has a 'protection level' associated with it. There are four levels, 0 being the most 
accessible, and 3 being the most restricted. When the processor is in user mode, pages with 
protection level 0 may be read and written; pages at level 1 may be read only, and levels 2 
and 3 are inaccessible. In supervisor mode, all levels may be read or written without 
restriction. (There is also a special form of user mode, controlled by MEMC, called OS 
mode. This allows read/write of levels 0 and 1 and reads-only of levels 2 and 3.) 

The next 16M bytes of the memory map is set aside for physical RAM. This is only 
accessible in supervisor mode. The top 16M bytes is split between ROM and I/O. ROM 
may be read in any processor mode, but access to some I/O locations (e.g. those which 
control the behaviour of MEMC itself) is restricted to supervisor mode. 

When an attempt is made to read or write an area of memory which is inaccessible in the 
current mode, an 'exception' occurs. This causes the processor to enter SVC mode and 
jump to a pre-defined location. There are various other ways in which user mode may be 
left, and these are all described below. Remember, though, that the memory scheme 
described in this section only refers to systems which use the Acorn MEMC, and might be 
different on your system. 
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7.2 Leaving user mode 

There are several circumstances in which a program executing in user mode might enter 
one of the other modes. These can be divided roughly into two groups, exceptions and 
interrupts. An exception occurs because a program has tried to perform an operation 
which is illegal for the current mode. For example, it might attempt to access a protected 
memory location, or execute an illegal instruction. 

Interrupts on the other hand, occur independently of the program's actions, and are 
initiated by some external device signalling the CPU. Interrupts are known as 
asynchronous events, because their timing has no relationship to what occurs in the 
program. 

The vectors 

When an exception or interrupt occurs, the processor stops what it is doing and enters one 
of the non-user modes. It saves the current value of R15 in the appropriate link register 
(R14_FIQ, R14_IRQ or R14_SVC), and then jumps to one of the vector locations which 
starts at address &0000000. This location contains a Branch instruction to the routine which 
will deal with the event. 

There are eight vectors, corresponding to eight possible types of situation which cause the 
current operation to be abandoned. They are listed overleaf: 

The table shows the address of the vector, what causes the jump there, how the IRQ and 
FIQ disable flags are affected (X meaning it's unaffected), and what mode the processor 
enters. All events disable IRQs, and RESET and FIQ disable FIQs too. All events except the 
interrupts cause SVC mode to be entered. 

Note that the FIQ vector is the last one, and the processor has no special use for the 

Vector Cause I F Mode 

&0000000 RESET 1 1 SVC

&0000004 Undefined instruction 1 X SVC

&0000008 Software interrupt (SWI) 1 X SVC

&000000C Abort (prefetch) 1 X SVC

&0000010 Abort (data) 1 X SVC

&0000014 Address exception 1 X SVC

&0000018 IRQ 1 X IRQ

&000001C FIQ 1 1 FIQ
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locations immediately following it. This means that the routine to handle a FIQ can be 
placed at location directly &1C, instead of a branch to it. 

The following sections describe the interrupts and exceptions in detail. It is likely that 
most readers will only ever be interested in using the interrupt vectors, and possibly the 
SWI and undefined instruction ones. The rest are usually looked after by the operating 
system. However, fairly detailed descriptions of what happens when all the vectors are 
called are given. If nothing else, this may help you to understand the code that your 
system's OS uses to deal with them. 

It is important to note that many of the routines entered through the vectors expect to 
return to the user program which was interrupted. To do this in a transparent way, all of 
the user's registers must be preserved. The PC and flags are automatically saved whenever 
a vector is called, so these can easily be restored. Additionally, all the supervisor modes 
have at least two private registers the contents or which are hidden from user programs. 
However, if the routine uses any registers which are not private to the appropriate mode, 
these must be saved and restored before the user program is restarted. If this is not done, 
programs will find register contents changing 'randomly' causing errors which are 
exceedingly difficult to track down. 

7.3 RESET 

The RESET signal is used to ensure that the whole system is in a well-defined state from 
which it can start operating. RESET is applied in two situations on most systems. Firstly, 
when power is first applied to the system, so-called power-on reset circuitry ensures that 
the appropriate levels are applied to the RESET signals of the integrated circuits in the 
computer. Secondly, there is usually a switch or button which may be used to RESET the 
system manually, should this be required. 

On typical ARM systems, the MEMC chip, which contains the power-on reset circuitry, is 
used to control the resetting of the rest of the computer.  

Upon receiving a RESET signal, the ARM immediately stops executing the current 
instruction. It then waits in an 'idle' state until the RESET signal is removed. When this 
happens, the following steps take place:  

? SVC mode is entered  
? R15 is saved in R14_SVC  
? The FIQ and IRQ disable bits are set  
? The PC is set to address &0000000  

Although the program counter value when the RESET occurred is saved, it is not likely 
that an attempt will be made to return to the program that was executing. Amongst other 
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reasons, the ARM may have been halfway through a long instruction (e.g. STM with many 
registers), so the affect of returning is unpredictable. However, the address and status bits 
could be printed by the operating system as part of 'debugging' information.  

Likely actions that are taken on reset are initialisation of I/O devices, setting up of system 
memory locations, possibly ending with control being passed to some user mode program, 
e.g. BASIC. 

7.4 Undefined instruction 

Not all of the possible 32-bit opcodes that the ARM may encounter are defined. Those 
which are not defined to do anything are 'trapped' when the ARM attempts to decode 
them. When such an unrecognised instruction code is encountered, the following occurs: 

? SVC mode is entered  
? R15 is saved in R14_SVC  
? The IRQ disable bit is set  
? The PC is set to address &0000004  

The program counter that is stored in R14_SVC holds the address of the instruction after 
the one which caused the trap. The usual action of the routine which handles this trap is to 
try to decode the instruction and perform the appropriate operation. For example the 
Acorn IEEE floating-point emulator interprets a range of floating point arithmetic 
instructions. Having done this, the emulator can jump back to the user's program using 
the PC saved in R15_SVC. 

By trapping undefined instructions in this way, the ARM allows future expansions to the 
instruction set to be made in a transparent manner. For example, an assembler could 
generate the (currently unrecognised) machine codes for various operations. These would 
be interpreted in software using the undefined instruction trap for now, but when a new 
version of the ARM (or a co-processor) is available which recognises the instructions, they 
would be executed in hardware and the undefined instruction trap would not be 
triggered. The only difference the user would notice is a speed-up in his programs.  

7.5 Software interrupt 

This vector is used when a SWI instruction is executed. SWI is not really an exception, nor is 
it a proper interrupt since it is initiated synchronously by the program. It is, however, a 
very useful feature since it enables user programs to call routines, usually part of the 
operating system, which are executed in the privileged supervisor mode.  

When a SWI is executed, the following happens: 
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? SVC mode is entered  
? R15 is saved in R14_SVC  
? The IRQ disable bit is set  
? The PC is set to address &0000008  

As with undefined instructions, the PC value stored in R14_SVC is one word after the SWI 
itself. The routine called through the SWI vector can examine the code held in the lower 24 
bits of the SWI instruction and take the appropriate actions. Most systems have a well-
defined set of operations which are accessible through various SWIs, and open-ended 
systems also allow for the user to add his or her own SWI handlers.  

To return to the user's program, the SWI routine transfers R14_SVC into R15. 

7.6 Aborts and virtual memory 

An 'abort' is caused by an attempt to access a memory or I/O location which is out of 
bounds to the program that is currently executing. An abort is signalled by some device 
external to the ARM asserting a signal on the CPU's ABORT line. In a typical system, this 
will be done by the MEMC, which controls all accesses to memory and I/O. Typical 
reasons for an abort occurring are attempts to: 

? write to a read-only logical RAM page  
? access physical RAM or I/O in user mode  
? access a supervisor mode-only logical page in user or OS mode  
? access an OS mode-only logical page in user mode  
? access a logical page which has no corresponding physical page  

There are two types of abort, each with its own vector. The one which is used depends on 
what the ARM was trying to do when the illegal access took place. If it happened as the 
ARM was about to fetch a new instruction, it is known as a pre-fetch abort. If it occurred 
while the ARM was trying to load or store data in an LDR/STR/LDM/STM instruction, it is 
known as a data abort. 

Virtual memory 

Except for programming errors, by far the most common cause of an abort is when the 
system is running what is known as virtual memory. When virtual memory is used, not all 
of the program is kept in physical RAM at once. A (possible majority) part of it is kept on a 
fast mass storage medium such as a Winchester disk. 

Suppose a computer is fitted with 1M byte of RAM, and it is required that a program 'sees' 
a memory space of 4M bytes. This 4M bytes might be located in the first part of the logical 
memory map, from address &0000000 to &003FFFFF. On the Winchester disk, 4M bytes 
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are set aside to represent the virtual address space of the program. Now as only 1M byte 
RAM is available, only a quarter of this virtual address space can be physically stored in 
the computer's RAM. In the diagram overleaf, the first 1M byte of the disk area is loaded 
into physical RAM and mapped into the lowest megabyte of the logical address space. 

As long as the program only accesses instructions and data which lie in the 

first megabyte of the logical address space, a mapping into physical RAM 

will be found by the MEMC and no problems will occur. Suppose, however, that the 
program attempts to access logical address 2,000,0000. There is no physical RAM which 
corresponds to this logical address, so MEMC will signal this fact to the processor using its 
ABORT line. 

The abort handler program responds to an abort in the following way. First, it discovers 
what logical address the program was trying to access. It then allocates a page of physical 
RAM which can hold the page of virtual memory corresponding to this address. The 
appropriate data is loaded in from the disk, and the logical to physical address map in the 
MEMC adjusted so that when the processor next tries to access the location which caused 
the abort, the newly-loaded data will be accessed. 

 

Now when a new page of virtual memory is loaded from disk, the previous contents of the 
area of physical memory used to store it must be discarded. This means that a range of 
addresses which used to be accessible will now cause an abort if an attempt is made to 
access them. Moreover, if that page contained data which has changed since it was first 
loaded from the disk, it must be re -written to the disk before the new page can be loaded. 
This ensures that the virtual memory on the disk is consistent with what is held in the 
RAM. 

It is up to the software which deals with aborts to decide which page to discard when 
fetching a new page from the disk, and whether it needs to be written out before it is 
destroyed by the new data. (If the re-allocated page contain a part of the program, or read-
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only data, then it is not necessary to write it to the disk first, since the copy already stored 
there will be correct.) There are several algorithms which are used to decide the way in 
which pages are re-allocated in response to aborts (which are often called 'page faults'). 
For example, the so-called 'least recently used' algorithm will use the page which has not 
been accessed for the longest period of time, on the assumption that it is not likely to be 
required in the near future. 

This may all seem incredibly slow and cumbersome, but in practice demand-paged virtual 
memory systems work well for the following reasons. Aborts are relatively infrequent as 
programs spend a lot of their time in small loops. ARM systems using MEMC have a fairly 
large page size (between 8K and 32K) so a program can spend a lot of its time in a single 
page without encountering 'missing' RAM. Additionally, virtual memory is often used on 
multi-tasking systems, where more than one program runs at once by sharing the CPU for 
short time slots. While the relatively slow transfer of data between RAM and disk is taking 
place, another program can be using the CPU. This means that although one program 
might be held up waiting for a segment of its virtual address space to be loaded from disk, 
another program whose program and data are in physical RAM can proceed. 

The subject of virtual memory is a complex one which is covered in a variety of text books. 
A good one is 'The Design of the Unix Operating System' by MJ Bach, published by 
Prentice-Hall. 

Pre-fetch aborts 

When a pre-fetch abort occurs, the ARM completes the instruction(s) before the one which 
'aborted'. When this instruction comes to be executed, it is ignored and the following takes 
place: 

? SVC mode is entered  
? R15 is saved in R14_SVC  
? The IRQ disable bit is set  
? The PC is set to address &000000C  

The PC value saved is the one after the instruction which caused the abort. The routine 
which deals with the pre-fetch abort must perform some action, as outlined above, which 
will enable the instruction to be re-tried and this time succeed. 

A simple single-tasking (one program at once) operating system running virtual memory 
might take the following steps on receiving a pre -fetch abort: 

? verify that it is a missing page problem (not access violation)  
? enable IRQs  
? find a suitable page of physical RAM  
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? load the page corresponding to the required logical address  
? set-up MEMC to map the physical to logical page  
? re-try the instruction by jumping to R14_SVC minus 4  

It is important to re-enable IRQs so that the normal servicing of interrupts is not disturbed 
while the new page is being loaded in. The third step may itself be quite involved, since a 
decision has to be made about which physical page is suitable for loading in the new 
section of the program and whether its current contents must be saved, as mentioned 
above. 

Data aborts 

A data abort is a little more complex, since the ARM is halfway through the instruction by 
the time the abort occurs. If the instruction was an LDR or STR, it is abandoned and no 
registers are altered (in particular, the base register is unchanged, even if write-back was 
specified). 

If the instruction was an LDM or STM, the instruction completes (though no registers are 
altered in an LDM), and the base register is updated if write-back was enabled. Note that if 
the base register was included in the list of registers to be loaded, it is not over-written as 
would normally be the case. The (possibly written-back) value is left intact. Then: 

? SVC mode is entered  
? R15 is saved in R14_SVC  
? The IRQ disable bit is set  
? The PC is set to address &0000010  

This time, R14_SVC is set to the instruction two words after the aborted one, not one. The 
abort handler routine must take the following action. It must examine the aborted 
instruction to find out the type and address mode, and undo the affect of any adjustment 
of the base register due to write-back. It can derive the address of the data which caused 
the abort to occur from the base register, and perform a similar paging process to that 
described for pre -fetch aborts. It can then re-execute the instruction, by jumping to address 
R14_SVC minus 8 using an instruction such as:  

SUB pc,link,#8 

The time taken to decode the instruction which caused the abort and perform the 
appropriate operations varies according to instruction type, number of registers (for 
LDM/STM), type of indexing (for LDR/STR) and whether write -back was enabled. Calculations 
made from typical abort-handler code result in times of between 20 s+41n-cycles for the 
best case and 121 s+36 n-cycles for the worst case. On an 8MHz ARM system, these 
translate into approximately 13.4us and 27.1us respectively. 

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

13 of 17



7.7 Address exception 

An address exception occurs if an attempt is made to access a location outside the range of 
the ARM's 26-bit address bus. This can be caused by the effective address (base plus any 
offset) of an LDR/STR instruction exceeding the value &3FFFFFF, or if the base register in an 
LDM/STM instruction contains a value greater than this. 

Note that in the latter case, the exception will only occur if the base register is illegal when 
the instruction starts to execute. If it is legal for the first data transfer, and subsequently 
exceeds &3FFFFFF having been auto-incremented, no exception occurs. Instead the 
address 'wraps round' and subsequent loads or stores take place in the first few locations 
of the memory map.  

Unlike the aborts described above, the address exception is detected internally by the 
ARM, and not by the assertion of a signal by some external device. Like data aborts, 
however, the incorrect instruction is abandoned or 'completed' as described above. 

On detecting the address error, the ARM causes the following to take place:  

? SVC mode is entered  
? R15 is saved in R14_SVC  
? The IRQ disable bit is set  
? The PC is set to address &0000014  

If it is required that the instruction be re -started after an address exception has been 
generated, the address in R14_SVC minus 4 can be used. However, there is usually not 
much point and the usual action is to enter a 'monitor' program which can be used to try 
to diagnose what went wrong. 

7.8 IRQ 

IRQ stands for Interrupt ReQuest, and is one of two interrupt inputs on the ARM. An 
external device signals to the ARM that it requires attention by asserting the IRQ line. At 
the end of every instruction's execution, the ARM checks for the presence of an IRQ. If an 
interrupt request has been made, and IRQs are enabled, the following happens: 

? IRQ mode is entered  
? R15 is saved in R14_IRQ  
? The IRQ disable bit is set  
? The PC is set to address &0000018  

If IRQs are disabled, because the IRQ disable bit in the status register is set, the interrupt is 
ignored and the ARM continues its normal processing. Note that on initiating an IRQ 
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routine, the ARM stes the IRQ, so further IRQs are disabled. 

The routine handling the interrupt must take the appropriate action, which will result in 
the interrupting device removing its request. For example, a serial communications device 
might cause an IRQ when a byte is available for reading. The IRQ routine, on discovering 
which device caused the interrupt, would read the data byte presented by the serial chip, 
and buffer it somewhere for later reading by a program. The action of reading a byte from 
the serial chip typically informs the device that its IRQ has been serviced and it 'drops' the 
interrupt request. 

On the ARM, the interrupt disable bits and processor mode bits in the status register 
cannot be altered in user mode. This means that user mode programs typically execute 
with both types of interrupt enabled, so that the 'background' work of servicing 
interrupting devices can take place. However, it is sometimes desirable to disable all 
interrupts, and there is typically a SWI call provided by the operating system which allows 
the interrupt masks to be changed by user mode programs. 

The following few paragraphs refer to the writing of both IRQ and FIQ routines. 

Interrupt routines must be quick in execution, because while the interrupt is being 
serviced, the main program cannot progress. The Acorn IOC (I/O controller) chip provides 
some support for dealing with interrupts which makes their processing more efficient. For 
example, it provides several IRQ inputs so that many devices may share the ARM's single 
IRQ line. These inputs may be selectively enabled/disabled, and a register in the IOC may 
be read to find which devices at any time require servicing. 

An interrupt routine usually has limitations imposed on what it can do. For example, it is 
undesirable for an interrupt handler to re-enable interrupts. If it does, another IRQ may 
come along which causes the handler to be called again, i.e. the routine is re-entered. 

It is possible to write code which can cope with this, and such routines are known as re-
entrant. Amongst other things, re-entrant routines must not use any absolute workspace, 
and must preserve the contents of all registers that they use (which all interrupt routines 
should do anyway). The first restriction means that the stack should be used for all 
workspace requirements of the routine, including saving the registers. This ensures that 
each re-entered version of the routine will have its own work area. 

Unfortunately, it is common to find that operating system routines are impossible to write 
in a re-entrant fashion. This means that it is not possible to use many operating system 
routines from within interrupt service code. A common example is to find that a machine's 
output character routine is executed with interrupts enabled and is not re-entrant. (The 
reason is that in some circumstances, e.g. clearing the screen, the output routine might 
take several milliseconds, or even seconds, and it would be unwise to disable interrupts 

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

15 of 17



for this long.) 

You should consult your system's documentation to find out the exact restrictions about 
using OS routines from within interrupt service code. 

Interrupt routines should also be careful about not corrupting memory that might be used 
by the 'foreground' program. Using the stack for all workspace is one way to avoid this 
problem. However, this is not always possible (for example, if the IRQ routine has to 
access a buffer used by the foreground program). You should always endeavour to restrict 
the sharing of locations by interrupt and non-interrupt code to a bare minimum. It is very 
hard to track down bugs which are caused by locations being changed by something 
outside the control of the program under consideration. 

To return to the user program, the IRQ routine subtracts 4 from the PC saved in R14_IRQ 
and places this in R15. Note that this saved version will have the IRQ disable bit clear, so 
as well as returning to the main program, the transfer causes IRQs to be re -enabled.  

7.9 FIQ 

FIQ stands for Fast Interrupt reQuest. A signal on the ARM's FIQ input causes FIQ mode 
to be entered, if enabled. As with IRQs, the ARM checks at the end of each instruction for a 
FIQ. If both types of interrupt occur at the same time, the FIQ is handled first. In this 
respect, it has a higher priority than IRQ. On responding to a FIQ, the ARM initiates the 
following actions: 

? FIQ mode is entered  
? R15 is saved in R14_FIQ  
? The FIQ and IRQ disable bits are set  
? The PC is set to address &000001C  

Notice that a FIQ disables subsequent FIQs and IRQs, so that whereas a FIQ can interrupt 
an IRQ, the reverse is not true (unless the FIQ handler explicitly enables IRQs). 

The term 'fast' for this type of interrupt is derived from a couple of its properties. First, FIQ 
mode has more 'private' registers than the other supervisor modes. This means that in 
order for a FIQ routine to do its job, it has to spend less time preserving any user registers 
that it uses than an IRQ routine would. Indeed, it is common for a FIQ routine not to use 
any user registers at all, the private ones being sufficient. Secondly, the FIQ vector was 
cleverly made the last one. This means that there is no need to have a branch instruction at 
address &000001C. Instead, the routine itself can start there, saving valuable microseconds 
(or fractions thereof). 

To return to the user program, the FIQ routine subtracts 4 from the PC saved in R14_FIQ 
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and places this in R15 (i.e. the PC). Note that this saved version will have the FIQ disable 
bit clear, so as well as returning to the interrupted program, the transfer causes FIQs to be 
re-enabled.  
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