
Appendix A 

The Co-processor Instructions 

In Chapter Seven, we talked about the undefined instruction trap. This occurs when the 
ARM tries to execute an instruction which does not have a valid interpretation. There are 
over four billion possible combinations of the 32 bits which form an instruction code, so it 
is not really surprising that some of these are not defined to do anything meaningful.  

There are two types of undefined instruction. The first set are totally illegal, and cause the 
undefined instruction vector to be called whenever they are encountered. The second set 
are only classed as illegal if there is no co-processor in the system which can execute them. 
Unsurprisingly, these are called the co-processor instructions. Note that the ARM itself 
treats all undefined instructions as possible co-processor ones. The only thing which 
distinguishes the first class from the second is that no co-processor will ever indicate that it 
can execute the first type. 

Note also that if an instruction is not executed because its condition codes cause it to be 
ignored by the ARM, it will never be 'offered' to a co-processor, or trapped as an 
undefined instruction. This means that if an instruction is a 'no-operation' due to its 
condition code being 'never', the rest of instruction can be anything - it will never cause a 
trap to occur. 

A.1 ARM/co-processor handshaking 

An ARM co-processor is an external chip (or chips), connected to the ARM data and 
control buses. When the ARM fails to recognise an instruction, it initiates a co-processor 
handshake sequence, using three special signals which connect the two chips together. The 
three signals are: 

CPI Co-processor instruction. 

The ARM asserts this when it encounters any undefined instruction. All co-processors in 
the system monitor it, ready to leap into action when they see it become active.  

CPA Co-processor absent. 

When a co-processor sees that an undefined instruction has been fetched (by reading the 
CPI signal), it uses CPA to tell the ARM if it can execute it. There are two parts to the 
instruction which determine whether it is 'co-processable'. The first is a single bit which 
indicates whether a particular undefined instruction is a proper co-processor one (the bit is 
set) or an undefined one (the bit is clear). 
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The second part is the co-processor id. This is a four-bit field which determines which of 
16 possible co-processors the instruction is aimed at. If this field matches the co-processor's 
id, and the instruction is a true co-processor one, the co-processor lets the ARM know by 
setting the CPA signal low. If none of the co-processors recognises the id, or there aren't 
any, the CPA line will remain in its normal high state, and the ARM will initiate an 
undefined instruction trap. 

CPB Co-processor busy 

Once a co-processor claims an instruction, the ARM must wait for it to become available to 
actually execute it. This is necessary because the co-processor might still be in the middle 
of executing a previous undefined instruction. The ARM waits for the co-processor to 
become ready by monitoring CPB. This is high while the co-processor is tied up 
performing some internal operation, and is taken low when it is ready to accept the new 
instruction. 

Note that while the ARM is waiting for CPB to go low, the program which executed the 
co-processor instruction is effectively halted. However, interrupts are still enabled, so 
these may be serviced as usual. When the interrupt routine returns to the co-processor 
instruction, it is effectively re -executed from the beginning, with the handshake starting 
again from the ARM asserting CPI. Note also that in a multi-tasking system, where several 
programs share the processor in turn, switching between tasks is performed under 
interrupts, so only the program which executed the co-processor instruction will be held 
up by the ARM waiting for the co-processor to become available.  

Once the ARM gets the co-processor's undivided attention, they can execute the 
instruction between them. There are three classes of instruction, and what happens once 
the co-processor is ready depends on which class the instruction belongs to. Simplest are 
the internal co-processor operations. These require no further intervention from the ARM, 
which continues executing the next instruction, while the co-processor performs the 
required operation. 

The second class is ARM to (or from) co-processor data transfer. This is where data is 
transferred between ARM registers and those on the co-processor. Thirdly, co-processor to 
(or from) memory operations may be executed. In these, the ARM provides the addresses, 
but data is transferred into or out of the co-processor. In the sections below, each class of 
co-processor instruction is described in detail. 

Like the ARM, a co-processor can restrict instruction execution to supervisor mode only. It 
does this by monitoring the state of the SPVMD signal, described in Chapter Seven. If a 
privileged instruction is attempted from user mode, the co-processor could signal this 
using the ABORT line, just as the MEMC does. The abort handler code would have to be 
able to determine that it was a co-processor rather than the MEMC which created the 
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abort, so that it could deal with it appropriately. However, there is no way in which an 
aborted co-processor instruction could be re-started, because the ARM cannot tell where 
the instruction originally came from. 

A.2 Types of co-processor 

Currently, only one co-processor's instruction set has been fully defined. This is the 
floating point unit (FPU). As the chips have not been made yet, even these instructions are 
treated as undefined ones. However, Acorn has written a program, the floating point 
emulator package, which intercepts the undefined instruction trap and emulates in 
software the floating point instruction set. The only difference between a system which has 
an FPU fitted and one which uses the emulator is the speed in which they execute the 
instructions (the emulator is anything between 10 and 100 times slower, depending on the 
operation). 

Because of the way in which the co-processor protocol works, it is possible to design chips 
which recognise successively more of the instruction set. Thus a first generation FPU 
might just execute the four simple arithmetic operations in hardware, leaving the emulator 
to do the difficult stuff (possible using the FPU instructions to do it). A final version could 
implement the whole of the instruction set, leaving the emulator with nothing to do. 

The FPU instruction set is described in Appendix B. 

Further co-processors might concentrate on other aspects of a system. For example, a 
graphics co-processor might execute line-drawing and shape filling instructions, 
performing the required calculations and data transfers without placing any burden on the 
ARM. Such a chip would probably have its own screen memory so that it would not have 
to compete with the ARM for access to RAM. 

A.3 Co-processor data instructions 

This class of instruction requires no further action from the ARM once it has ascertained 
that there is a co-processor capable of dealing with it. However, as mentioned above, the 
ARM may still have to wait for the co-processor to become available before it can carry on 
with the next instruction. 

Because there is no further communication between the ARM and the co-processor, the 
latter could incorporate an internal buffer where it stores the instructions for later 
execution. As long as there is room in the buffer (commonly called a FIFO for 'first-in, first-
out queue'), the co-processor can accept an instruction immediately. Thus while the ARM 
is fetching and executing (defined) instructions from memory, the co-processor could 
meanwhile be executing its internal operations in parallel. This is similar to the well 
known Acorn Second Processor concept, where an I/O processor accepts commands from 
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a FIFO while the language processor works independently on some other task.  

In practice the amount of parallel processing which can be achieved is limited by the fact 
that eventually the ARM will want a result from the co-processor; so it will hang around 
waiting for the queue of instructions to be executed before it can ask for the required 
values. In situations where results are not required, e.g. a graphics co-processor which just 
takes commands and executes them without passing information back, the benefits can be 
great. 

The general mnemonic for this type of instruction is CDP, for co-processor data processing. 
There are five operands which define which co-processor is required, which operation is 
required, which are the source and destination registers, and one for 'optional extra' 
information. Of course, the condition code mnemonic may also be present. 

Here is the general form of a CDP instruction: 

CDP{cond} <cp#>,<op>,<dest>,<lhs>,<rhs>,{info} 

where 

? {cond} is the optional condition code  
? <cp#> is the co-processor number (0-15)  
? <op> is the desired operation code (0-15)  
? <dest> is the co-processor destination register (0-15)  
? <lhs> and  
? <rhs> are the co-processor source registers (0-15)  
? {info} is the optional additional information field (0-7)  

The last five are all stored as four-bit (or three-bit in the case of info) fields in the 
instruction code. Note that except for the co-processor number field, which must be in a 
fixed place in the instruction for the system to work, none of the items has to be 
interpreted as above. A co-processor can place whatever meaning on the remaining 19 bits 
that it wants, but this standard defined by Acorn should at least be used as a starting 
point. 

A particular type of co-processor would have its co-processor field value fixed, and the 
operation code could be given a more meaningful name. For example, the FPU has a <cp#> 
of 1 and uses the <op> field to describe one of sixteen possible instructions. 

There are only eight registers in the FPU, so the top bit of the <dest>, <lhs> and <rhs> 
fields can be used for other purposes. For example, the top bit of the <dest> field is used to 
indicate which class of operation is required (dyadic, operating on two values, or monadic, 
operating on one). 
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So, although the FPU conforms to the spirit of the standard, it uses the fields to maximise 
the use of the bits available in the instruction. A typical FPU instruction is:  

ADF {cond}<P>{R} <dest>,<lhs>,<rhs> 

where 

? <P> is the precision of the operation  
? {R} is the optional rounding mode and the other fields are as above.  

The <P> and {R} fields are encoded into the 'optional extra' information field and the top 
bit of the <lhs> field. For more details about the FPU instruction set, see Appendix B. 

As another example, a graphics co-processor might use a CDP instruction to set its colour 
palette entries. For example, 

CDP 2,<palette>,<entry>,<value>,<component> 

where 

? 2 is the co-processor number  
? <palette> is the op-code for setting the palette  
? <entry> is the logical colour number (0-15) (the <dest> field)  
? <component> is the red, green or blue component (0-2) (the info field)  
? <value> is the intensity for that component (0-65535) (the <lhs> and  
? <rhs>) field.  

As long as the desired operation can be expressed in the number of bits available, any 
operation which requires no further communication between the ARM and co-processor 
can use a CDP-type instruction. 

A.4 Co-processor register transfer operations  

This class of co-processor instruction is used to transfer a single 32-bit value from the ARM 
to the co-processor, or from the co-processor to the ARM. The standard mnemonics are MRC
for Move from ARM to Co-processor, and MCR for Move from Co-processor to ARM. The 
general forms are:  

MRC{cond} <cp#>,<op>,<ARM srce>,<lhs>,<rhs>,{info} 
MCR{cond} <cp#>,<op>,<ARM dest>,<lhs>,<rhs>,{info} 

where 

? <cp#> is the co-processor number (0-15)  
? <op> is the operation code required (0-7)  
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? <ARM srce>/<ARM dest> is the ARM source/destination register (0-15)  
? <lhs> and <rhs> are co-processor register numbers (0-15)  
? {info} is optional extra information (0-7)  

Notice that the number of possible opcodes has been halved compared to CDP, as there are 
now two directions between which to share the sixteen possible codes. 

The MCR instruction does not necessarily have to be a simple transfer from a co-processor 
register to an ARM one. A complex internal operation could be performed on <lhs> and 
<rhs> before the transfer takes place. The co-processor only signals its readiness to the 
ARM when it has performed all the necessary internal work and is prepared to transfer the 
result to the ARM. 

Again, the exact interpretation of the fields depends on the type of co-processor. An 
example of an FPU MRC operation is the 'float' instruction, to convert a 32-bit two's 
complement integer (in an ARM register) to a floating point number of some specified 
precision and rounding type (in an FPU register): 

FLT{cond}<P>{R} <ARM srce>,<lhs> 

Similarly, an FPU MCR instruction is the 'fix' operation, which converts a floating point 
number (in the FPU) to an integer (in the ARM): 

FIX{cond}<P>{R} <ARM dest>,<rhs> 

Notice that a different field is used in each case to specify the required FPU register. This 
does not concern the programmer, since only a register number (or name) is specified. It is 
up to the assembler to generate the appropriate binary op-code. 

A graphics co-processor might use this instruction to read or write the current pixel 
location. If expressed as two sixteen bit co-ordinates, this could be encoded into a single 
32-bit register. The operations might be:  

MCR 2,<cursor>,<ARM dest> 
MRC 2,<cursor>,<ARM srce> 

In this case, only the opcode is set to <cursor> to indicate a cursor operation. The <lhs>, 
<rhs> and {info} fields are not used.  

Using R15 in MCR/MRC instructions 

When R15 in the ARM is specified as the <ARM dest> register, only four bits are ever 
affected: the N, Z, V and C flags. The PC part of R15 and the mode and interrupt bits are 
never changed, even in supervisor mode. This makes the MCR instruction useful for 
transferring data from the co-processor directly into the ARM result flags. The FPU's 
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compare instructions use this facility.  

If R15 is given as the <srce> register, all 32-bits are transferred to the co-processor. It is not 
envisaged that many co-processors will have a use for the ARM's PC/status register, but 
the ability to access it is there if required. 

A.5 Co-processor data transfer operations 

This group of instructions provides a similar function to the LDR/STR instructions, but 
transfers data between a co-processor and memory instead of between the ARM and 
memory. The address of the word(s) to be transferred is expressed in a similar way to 
LDR/STR, that is to say you can use pre-indexed and post-indexed addressing, using any of 
the ARM registers as a base. However, only immediate offsets are allowed, in the range -
255 to +255 words (-1020 to +1020 bytes). 

Like LDR/STR, write-back to the base register may be performed optionally after a pre-
indexed instruction and is always performed after a post-indexed instruction. 

The mnemonics are LDC to load data into a co-processor, and STC to store data. The full 
syntax is:  

LDC{cond}{L} <cp#>,<dest>,<address> 
STC{cond}{L} <cp#>,<srce>,<address> 

where 

? {L} is an optional bit meaning 'long transfer'; see below  
? <cp#> is the co-processor number (0-15)  
? <srce>,<dest> is the co-processor register number (0-15)  
? <address> specifies the address at which to start transferring data  

Address modes 

There are three forms that <address> can take: a simple expression, a pre-indexed address, 
and a post-indexed address. 

If a simple expression is given for the address, the assembler will try to generate a PC-
relative, pre-indexed instruction, without write -back. Thus if you say: 

LDC 1,F1,label 

(F1 being a co-processor register name) the assembler will generate this equivalent 
instruction: 

LDC 1,F1,[R15,#label-(P%+8)] 

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

7 of 10



assuming the label is after the instruction. Note that as with LDR/STR, the assembler takes 
pipe-lining into account automatically when R15 is used implicitly (as above), or explicitly 
(as below). Note also that the maximum offset in each direction is only 1020 bytes for 
LDC/STC, instead of 4095, which LDR/STR give you. If the address that the instruction tries to 
access is outside the available range, the assembler gives an error. 

The remaining forms of <address> are:  

[<base>] address in ARM register <base> 
[<base>,#<offset>]{!} <base>+<offset>, {with write-back} 
[<base>],#<offset> <base>, then add <offset> to <base> 

The offsets are specified in bytes, in the range -1020 to +1020. However, they are scaled to 
words (by dividing by four) when stored in the instruction, so only word-boundary offsets 
should be used. 

These instructions differ from LDR/STR in that more than one register may be transferred. 
The optional L part of the syntax is designed to enable a choice between short (single 
word) and long (multiple word) transfers to take place. It is up to the co-processor to 
control how many words are transferred. The ARM, having calculated the start address 
from the base register, offset, and address mode will automatically increment the address 
after each operation. 

Long transfers 

Remember that LDM/STM always loads/stores registers in ascending memory locations. A 
similar thing happens with multiple register LDC/STC transfers. Suppose an STCL instruction 
for a given co-processor stores its internal registers from the one given in the instruction, 
up to the highest one, F7. The instruction: 

STCL 1,F0,[R1,#-32]! 

works as follows. The start address of the transfer is calculated from the contents of R1 
minus 32. This is written back into R1. Then the eight data transfers take place, starting 
from the calculated address and increasing by four bytes after each one. Similarly, 

LDCL 1,F4,[R1],#16 

will load four registers, starting from the address in R1 and adding four after each transfer. 
Finally, 16 is added to the base register R1. 

The FPU uses this group of instructions to load and store numbers from its floating point 
registers. There are four possible lengths allowed (single, double, extended and packed) 
which take one, two, three and three words of memory respectively. The L option only 
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allows two possible lengths. However, the FPU only has eight internal registers, so the top 
bit of the <dest>/<srce> field is used to encode the extra two length options. 

Apart from this minor difference, the FPU load and store data instructions obey exactly 
the general form of the co-processor data transfer, as Appendix B describes. 

Aborts and address exceptions 

Since this class of instruction uses the ARM address bus, instruction aborts and address 
exceptions can occur as for LDM/STM etc. In the case of an exception (the start address has 
one or more of bits 26-31 set), exactly the same action occurs as for a native ARM 
exception, i.e. the instruction is stopped and the address exception vector called. In the 
case of multiple word transfers, only an illegal start address will be recognised; if it 
subsequently gets incremented to an illegal value, it will 'wrap-around' into the first few 
words of memory.  

Data aborts also behave in a similar way to native ARM instructions. As usual, if write-
back was specified, the base register will be updated, but no other changes will take place 
in the ARM or co-processor registers. This enables the abort handler code to re-start the 
instruction after undoing any indexing. Note that it is up to the co-processor to monitor 
the ABORT signal and stop processing when it is activated.  

A.6 Co-processor instruction timings 

In addition to the n, i and i-cycles mentioned at the end of Chapter Three, co-processor 
instructions also use c (for co-processor) cycles. These are the same period as s and i-
cycles. 

CDP timing 

1 s + B i-cycles. 

MRC timing 

1 s + B i + 1 c-cycles. 

MCR timing 

1 s + (B+1) i + 1 c- cycles. 

LDC/STC timing 

(N-1) s + B i + 1 c-cycles. 
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where: 

B is the number of cycles the ARM spends waiting for the co-processor to become ready 
(which has a minimum of zero). 

N is the number of words transferred. 
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