
6. Data Structures 

We have already encountered some of the ways in which data is passed between parts of a 
program: the argument and result passing techniques of the previous chapter. 

In this chapter we concentrate more on the ways in which global data structures are 
stored, and give example routines showing typical data manipulation techniques. 

Data may be classed as internal or external. For our purposes, we will regard internal data 
as values stored in registers or 'within' the program itself. External data is stored in 
memory allocated explicitly by a call to an operating system memory management 
routine, or on the stack. 

6.1 Writing for ROM 

A program's use of internal memory data may have to be restricted to read-only values. If 
you are writing a program which might one day be stored in a ROM, rather than being 
loaded into RAM, you must bear in mind that performing an instruction such as: 

STR R0, label 

will not have the desired effect if the program is executing in ROM. So, you must limit 
internal references to look-up tables etc. if you wish your code to be ROMmable. For 
example, the BBC BASIC interpreter only accesses locations internal to the program when 
performing tasks such as reading the tables of keywords or help information. 

A related restriction on ROM code is that it should not contain any self-modifying 
instructions. Self-modifying code is sometimes used to alter an instruction just before it is 
executed, for example to perform some complex branch operation. Such techniques are 
regarded as bad practice, and something to be avoided, even in RAM programs. 
Obviously if you are tempted to write self-modifying code, you will have to cope with 
some pretty obscure bugs if the program is ever ROMmed.  

Finally, the need for position-independence is an important consideration when you write 
code for ROM. A ROM chip may be fitted at any address in the ROM address space of the 
machine, and should still be expected to work.  

The only time it is safe to write to the program area is in programs which will always, 
always, be RAM-based, e.g. small utilities to be loaded from disc. In fact, even RAM-based 
programs aren't entirely immune from this problem. The MEMC memory controller chip 
which is used in many ARM systems has the ability to make an area of memory 'read-
only'. This is to protect the program from over-writing itself, or other programs in a multi-
tasking system. Attempting to write to such a region will lead to an abort, as described in 
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Chapter Seven. 

It is a good idea, then, to only use RAM which has been allocated explicitly as workspace 
by the operating system, and treat the program area as 'read-only'. 

6.2 Types of data 

The interpretation of a sequence of bits in memory is entirely up to the programmer. The 
only assumption the processor makes is that when it loads a word from the memory 
addressed by the program counter, the word is a valid ARM instruction. 

In this section we discuss the common types of data used in programs, and how they 
might be stored. 

6.3 Characters 

This is probably the most common data type, as communication between programs and 
people is usually character oriented. A character is a small integer whose value is used to 
stand for a particular symbol. Some characters are used to represent control information 
instead of symbols, and are called control codes. 

By far the most common character representation is ASCII - American Standard Code for 
Information Interchange. We will only be concerned with ASCII in this book. 

Standard ASCII codes are seven bits - representing 128 different values. Those in the range 
32..126 stand for printable symbols: the letters, digits, punctuation symbols etc. An 
example is 65 (&41), which stands for the upper-case letter A. The rest 0..31 and 127 are 
control codes. These codes don't represent physical characters, but are used to control 
output devices. For example, the code 13 (&0D) is called carriage return, and causes an 
output device to move to the start of the current line. 

Now, the standard width for a byte is eight bits, so when a byte is used to store an ASCII 
character, there is one spare bit. Previously (i.e. in the days of punched tape) this has been 
used to store a parity bit of the character. This is used to make the number of 1 bits in the 
code an even (or odd) number. This is called even (or odd) parity. For example, the binary 
of the code for the letter A is 1000001. This has an even number of one bits, so the parity bit 
would be 0. Thus the code including parity for A is 01000001. On the other hand, the code 
for C is 1000011, which has an odd number of 1s. To make this even, we would store C 
with parity as 11000011. Parity gives a simple form of checking that characters have been 
sent without error over transmission lines. 

As output devices have become more sophisticated and able to display more than the 
limited 95 characters of pure ASCII, the eighth bit of character codes has changed in use. 
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Instead of this bit storing parity, it usually denotes another 128 characters, the codes for 
which lie in the range 128..255. Such codes are often called 'top-bit-set' characters, and 
represent symbols such as foreign letters, the Greek alphabet, symbol 'box-drawing' 
characters and mathematical symbols.  

There is a standard (laid down by ISO, the International Standards Organisation) for top-
bit-set codes in the range 160..255. In fact there are several sets of characters, designed for 
different uses. It is expected that many new machines, including ARM-based ones will 
adopt this standard. 

The use of the top bit of a byte to denote a second set of character codes does not preclude 
the use of parity. Characters are simply sent over transmission lines as eight bits plus 
parity, but only stored in memory as eight bits. 

When stored in memory, characters are usually packed four to each ARM word. The first 
character is held in the least significant byte of the word, the second in the next byte, and 
so on. This scheme makes for efficient processing of individual characters using the LDRB 
and STRB instructions. 

In registers, characters are usually stored in the least significant byte, the other three bytes 
being set to zero. This is clearly wise as LDRB zeroes bits 8..31 of its destination register, and 
STRB uses bits 0..7 of the source register as its data. 

Common operations on registers are translation and type testing. We cover translation 
below using strings of characters. Type testing involves discovering if a character is a 
member of a given set. For example, you might want to ascertain if a character is a letter. 
In programs which perform a lot of character manipulation, it is common to find a set of 
functions which return the type of the character in a standard register, e.g. R0. 

These type-testing functions, or predicates, are usually given names like isLower (case) or 
isDigit, and return a flag indicating whether the character is a member of that type. We 
will adopt the convention that the character is in R0 on entry, and on exit all registers are 
preserved, and the carry flag is cleared if the character is in the named set, or set if it isn't. 
Below are a couple of examples: isLower and isDigit: 

DIM org 100 
sp = 1 
link =14 
WriteI = &100 
NewLine = 3 
Cflag = &20000000 : REM Mask for carry flag 
FOR pass=0 TO 2 STEP 2 
P%=org 
[ opt pass 
; 
;Character type-testing predicates. 
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;On entry, R0 contains the character to be tested 
;On exit C=0 if character in the set, C=1 otherwise 
;All registers preserved 
; 
.isLower 
CMP R0, #ASC"a" ;Check lower limit 
BLT predFail ;Less than so return failure 
CMP R0, #ASC"z"+1 ;Check upper limit 
MOV pc, link ;Return with appropriate Carry 
.predFail 
TEQP pc, #Cflag ;Set the carry flag 
MOV pc, link ;and return 
; 
.isDigit 
CMP R0, #ASC"0" ;Check lower limit 
BLT predFail ;Lower so fail 
CMP R0, #ASC"9"+1 ;Check upper limit 
MOV pc, link ;Return with appropriate Carry 
; 
;Test for isLower and isDigit 
;If R0 is digit, 0 printed; if lower case, a printed 
; 
.testPred 
STMFD (sp)!,{link} 
BL isDigit 
SWICC WriteI+ASC"0" 
BL isLower 
SWICC WriteI+ASC"a" 
SWI NewLine 
LDMFD (sp)!,{pc} 
; 
] 
NEXT pass 
REPEAT 
INPUT"Character ",c$ 
A%=ASCc$ 
CALL testPred 
UNTIL FALSE 

The program uses two different methods to set the carry flag to the required state. The first 
is to use TEQP. Recall from Chapter Three that this can be used to directly set bits of the 
status register from the right hand operand. The variable Cflag is set to &20000000, which 
is bit mask for the carry flag in the status register. Thus the instruction 

TEQP pc, #Cflag 

will set the carry flag and reset the rest of the result flags. The second method uses the fact 
that the CMP instruction sets the carry flag when the <lhs> is greater than or equal to its 
<rhs>. So, when testing for lower case letters, the comparison 

CMP R0,#ASC"z"+1 

will set the carry flag if R0 is greater than or equal to the ASCII code of z plus 1. That is, if 
R0 is greater than the code for z, the carry will be set, and if it is less than or equal to it 
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(and is therefore a lower case letter), the carry will be clear. This is exactly the way we 
want it to be set-up to indicate whether R0 contains a lower case letter or not. 

Strings of characters 

When a set of characters is stored contiguously in memory, the sequence is usually called a 
string. There are various representations for strings, differentiated by how they indicate 
the number of characters used. A common technique is to terminate the string by a pre-
defined character. BBC BASIC uses the carriage return character &0D to mark the end of 
its $ indirection operator strings. For example, the string "ARMENIA" would be stored as the 
bytes 

A &41 
R &52 
M &4D 
E &45 
N &4E 
I &49 
A &41 
cr &0D 

An obvious restriction of this type of string is that it can't contain the delimiter character. 

The other common technique is to store the length of the string immediately before the 
characters - the language BCPL adopts this technique. The length may occupy one or more 
bytes, depending on how long a string has to be represented. By limiting it to a single byte 
(lengths between 0 and 255 characters) you can retain the byte-aligned property of 
characters. If, say, a whole word is used to store the length, then the whole string must be 
word aligned if the length is to be accessed conveniently. Below is an example of how the 
string "ARMAMENT" would be stored using a one-byte length: 

len &08 
A &41 
R &52 
M &4D 
A &41 
M &4D 
E &45 
N &4E 
T &54 

Clearly strings stored with their lengths may contain any character. 

Common operations on strings are: copying a string from one place to another, counting 
the length of a string, performing a translation on the characters of a string, finding a sub-
string of a string, comparing two strings, concatenating two strings. We shall cover some 
of these in this section. Two other common operations are converting from the binary to 
ASCII representation of a number, and vice versa. These are described in the next section. 
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Character translation 

Translation involves changing some or all of the characters in a string. A common 
translation is the conversion of lower case letters to upper case, or vice versa. This is used, 
for example, to force filenames into upper case. Another form of translation is converting 
between different character codes, e.g. ASCII and the less popular EBCDIC. 

Overleaf is a routine which converts the string at strPtr into upper case. The string is 
assumed to be terminated by CR. 

DIM org 100, buff 100 
cr = &0D 
strPtr = 0 
sp = 13 
link = 14 
carryBit = &20000000 
FOR pass=0 TO 2 STEP 2 
P%=org 
[ opt pass 
;toUpper. Converts the letters in the string at strPtr 
;to upper case. All other characters are unchanged. 
;All registers preserved 
;R1 used as temporary for characters 
; 
toUpper 
STMFD (sp)!,{R1,strPtr,link};Preserve registers 
.toUpLp 
LDRB R1, [strPtr], #1 ;Get byte and inc ptr 
CMP R1, #cr ;End of string? 
LDMEQFD (sp)!,{R1,strPtr,pc} ;Yes, so return 
BL isLower ;Check lower case 
BCS toUpLp ;Isn't, so loop 
SUB R1,R1,#ASC"a"-ASC"A" ;Convert the case 
STRB R1,[strPtr,#-1] ;Save char back 
B toUpLp ;Next char 
; 
.isLower 
CMP R1, #ASC"a" 
BLT notLower 
CMP R1, #ASC"z"+1 
MOV pc,link 
.notLower 
TEQP pc,#carryBit 
MOV pc,link 
] 
NEXT 
REPEAT 
INPUT"String ",$buff 
A%=buff 
CALL toUpper 
PRINT"Becomes "$buff 
UNTIL FALSE 

The program uses the fact that the upper and lower case letters have a constant difference 
in their codes under the ASCII character set. In particular, each lower case letter has a code 
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which is 32 higher than its upper case equivalent. This means that once it has been 
determined that a character is indeed a letter, it can be changed to the other case by adding 
or subtracting 32. You can also swap the case by using this operation: 

EOR R0, R0, #ASC"a"-ASC"A" ;Swap case 

The EOR instruction inverts the bit in the ASCII code which determines the case of the 
letter. 

Comparing strings 

The example routine in this section compares two strings. String comparison works as 
follows. If the strings are the same in length and in every character, they are equal. If they 
are the same up to the end of the shorter string, then that is the lesser string. If they are the 
same until a certain character, the relationship between the strings is the same as that 
between the corresponding characters at that position. 

strCmp below compares the two byte-count strings at str1 and str2, and returns with the 
flags set according to the relationship between them. That is, the zero flag is set if they are 
equal, and the carry flag is set if str1 is greater than or equal to str2. 

DIM org 200, buff1 100, buff2 100 
REM str1 to char2 should be contiguous registers 
str1 = 0 
str2 = 1 
len1 = 2 
len2 = 3 
index = 4 
flags = len2 
char1 = 5 
char2 = 6 
sp = 13 
link = 14 
FOR pass=0 TO 2 STEP 2 
P%=org 
[ opt pass 
;strCmp. Compare the strings at str1 and str2. On exit, 
;all registers preserved, flags set to the reflect the 
;relationship between the strings. 
;Registers used: 
;len1, len2 - the string lengths. len1 is the shorter one 
;flags - a copy of the flags from the length comparison 
;index - the current character in the string 
;char1, char2 - characters from each string 
;NB len2 and flags can be the same register 
; 
.strCmp 
;Save all registers 
STMFD (sp)!, {str1-char2,link} 
LDRB len1, [str1], #1 ;Get the two lengths 
LDRB len2, [str2], #1 ;and move pointers on 
CMP len1, len2 ;Find the shorter 
MOVGT len1, len2 ;Get shorter in len1 
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MOV flags, pc ;Save result 
MOV index, #0 ;Init index 
.strCmpLp 
CMP index, len1 ;End of shorter string? 
BEQ strCmpEnd ;Yes so result on lengths 
LDRB char1, [str1, index] ;Get a character from each 
LDRB char2, [str2, index] 
ADD index, index, #1 ;Next index 
CMP char1, char2 ;Compare the chars 
BEQ strCmpLp ;If equal, next char 
; 
;Return with result of last character compare 
;Store flags so BASIC can read them 
; 
STR pc,theFlags 
LDMFD (sp)!,{str1-char2,pc} 
; 
;Shorter string exhausted so return with result of 
;the comparison between the lengths 
; 
.strCmpEnd 
TEQP flags, #0 ;Get flags from register 
; 
;Store flags so BASIC can read them 
; 
STR pc,theFlags 
LDMFD (sp)!, {str1-char2,pc} 
; 
.theFlags 
EQUD 0 
] 
NEXT pass 
carryBit = &20000000 
zeroBit = &40000000 
REPEAT 
INPUT'"String 1 ",s1$,"String 2 ",s2$ 
?buff1=LENs1$ : ?buff2=LENs2$ 
$(buff1+1)=s1$ 
$(buff2+1)=s2$ 
A%=buff1 
B%=buff2 
CALL strCmp 
res = !theFlags 
PRINT "String 1 " 
IF res AND carryBit THEN PRINT">= "; ELSE PRINT "< "; 
PRINT "String 2" 
PRINT "String 1 "; 
IF res AND zeroBit THEN PRINT"= "; ELSE PRINT"<> "; 
PRINT "String 2" 
UNTIL FALSE 

Finding a sub-string 

In text-handling applications, we sometimes need to find the occurrence of one string in 
another. The BASIC function INSTR encapsulates this idea. 

The call 
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INSTR("STRING WITH PATTERN","PATTERN") 

will return the integer 13, as the sub-string "PATTERN" occurs at character 13 of the first 
argument. 

The routine listed below performs a function analogous to INSTR. It takes two arguments - 
byte-count string pointers - and returns the position at which the second string occurs in 
the first one. The first character of the string is character 1 (as in BASIC). If the sub-string 
does not appear in the main string, 0 is returned. 

For a change, we use the stack to pass the parameters and return the result. It is up to the 
caller to reserve space for the result under the arguments, and to 'tidy up' the stack on 
return. 

DIM org 400,mainString 40, subString 40 
str1 = 0 
str2 = 1 
result = 2 
len1 = 3 
len2 = 4 
char1 = 5 
char2 = 6 
index = 7 
work = 8 
sp = 13 
link = 14 
FOR pass=0 TO 2 STEP 2 
P%=org 
[ opt pass 
; 
;instr. Finds the occurence of str2 in str1. Arguments on 
;the stack. On entry and exit, the stack contains: 
; 
; result word 2 
; str1 word 1 
; str2 <-- sp word 0 plus 10 pushed words 
; 
;str1 is the main string, str2 the substring 
;All registers are preserved. Result is 0 for no match 
; 
.instr 
;Save work registers 
STMFD (sp)!,{str1-work,link} 
LDR str1, [sp, #(work-str1+2+0)*4] ;Get str1 pointer 
LDR str2, [sp, #(work-str1+2+1)*4] ;and str2 pointer 
MOV work, str1 ;Save for offset calculation 
LDRB len1, [str1], #1 ;Get lengths and inc pointers 
LDRB len2, [str2], #1 
.inLp1 
CMP len1, len2 ;Quick test for failure 
BLT inFail ;Substr longer than main string 
MOV index, #0 ;Index into strings 
.inLp2 
CMP index, len2 ;End of substring? 
BEQ inSucc ;Yes, so return with str2 
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CMP index, len1 
BEQ inNext ;End of main string so next try 
LDRB char1, [str1, index] ;Compare characters 
LDRB char2, [str2, index] 
ADD index, index, #1 ;Inc index 
CMP char1, char2 ;Are they equal? 
BEQ inLp2 ;Yes, so next char 
.inNext 
ADD str1, str1, #1 ;Move onto next start in str2 
SUB len1, len1, #1 ;It's one shorter now 
B inLp1 
.inFail 
MOV work, str1 ;Make SUB below give 0 
.inSucc 
SUB str1, str1, work ;Calc. pos. of sub string 
STR str1,[sp,#(work-str1+2+2)*4] ;Save it in result 
;Restore everything and return 
LDMFD (sp)!,{str1-work,pc} 
; 
;Example of calling instr. 
;Note that in order that the STM pushes the  
;registers in the order expected by instr, the following 
;relationship must exist. str2 < str1 < result 
; 
.testInstr 
ADR str1,mainString ;Address of main string 
ADR str2,subString ;Address of substring 
STMFD (sp)!, {str1,str2,result,link} ;Push strings and 
BL instr ;room for the result. Call instr. 
LDMFD (sp)!, {str1,str2,result} ;Load strings & result 
MOV R0,result ;Result in r0 for USR function 
LDMFD (sp)!,{pc} 
; 
] 
NEXT 
REPEAT 
INPUT"Main string 1 ",s1$ , "Substring 2 ",s2$ 
?mainString = LEN s1$ 
?subString = LEN s2$ 
$(mainString+1) = s1$ 
$(subString+1) = s2$ 
pos = USR testInstr 
PRINT "INSTR("""s1$""","""s2$""") =";pos; 
PRINT " (";INSTR(s1$,s2$)")" 
UNTIL FALSE 

The Note in the comments is to act as a reminder of the way in which multiple registers 
are stored. STM always saves lower numbered registers in memory before higher numbered 
ones. Thus if the correct ordering on the stack is to be obtained, register str2 must be 
lower than str1, which must be lower than result. Of course, if this weren't true, correct 
ordering on the stack could still be achieved by pushing and pulling the registers one at a 
time.  

6.4 Integers 

The storage and manipulation of numbers comes high on the list of things that computers 
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are good at. For most purposes, integer (as opposed to floating point or 'real') numbers 
suffice, and we shall discuss their representation and operations on them in this section. 

Integers come in varying widths. As the ARM is a 32-bit machine, and the group one 
instructions operate on 32-bit operands, the most convenient size is obviously 32-bits. 
When interpreted as signed quantities, 32-bit integers represent a range of -2,147,483,648 to 
+2,147,483,647. Unsigned integers give a corresponding range of 0 to 4,294,967,295. 

When stored in memory, integers are usually placed on word boundaries. This enables 
them to be loaded and stored in a single operation. Non word-aligned integer require two 
LDRs or STRs to move them in and out of the processor, in addition to some masking 
operations to 'join up the bits'. 

It is somewhat wasteful of memory to use four bytes to store quantities which need only 
one or two bytes. We have already seen that characters use single bytes to hold an eight-bit 
ASCII code, and string lengths of up to 255 characters may be stored in a single byte. An 
example of two-byte quantities is BASIC line numbers (which may be in the range 0..65279 
and so require 16 bits). 

LDRB and STRB enable unsigned bytes to to transferred between the ARM and memory 
efficiently. There may be occasions, though, when you want to store a signed number in a 
single byte, i.e. -128 to 127, instead of more usual 0..255. Now LDRB performs a zero-
extension on the byte, i.e. bits 8..31 of the destination are set to 0 automatically. This means 
that when loaded, a signed byte will have its range changed to 0..255. To sign extend a 
byte loaded from memory, preserving its signed range, this sequence may be used: 

LDRB R0, <address> ;Load the byte 
MOV R0, R0, LSL #24 ;Move to bits 24..31 
MOV R0, R0, ASR #24 ;Move back with sign 

It works by shifting the byte to the most significant byte of the register, so that the sign bit 
of the byte (bit 7) is at the sign bit of the word (bit 31). The arithmetic shift right then 
moves the byte back again, extending the sign as it does so. After this, normal 32-bit ARM 
instructions may be performed on the word. 

(If you are sceptical about this technique giving the correct signed result, consider eight-bit 
and 32-bit two's complement representation of numbers. If you examine a negative 
number, zero and a positive number, you will see that in all cases, bit 7 of the eight-bit 
version is the same as bits 8..31 of the 32-bit representation.) 

The store operation doesn't need any special attention: STRB will just store bits 0..7 of the 
word, and bit 7 will be the sign bit (assuming, of course, that the signed 32-bit number 
being stored is in the range -128..+127 which a single byte can represent). 

ARM Assembly Language Programming - Chapter 6 - Data Structures

11 of 36



Double-byte (16-bit) operands are best accessed using a couple of LDRBs or STRBs. To load 
an unsigned 16-bit operand from an byte-aligned address use: 

LDRB R0, <address> 
LDRB R1, <address>+1 
ORR R0, R0, R1, LSL #8 

The calculation of <address>+1 might require an extra instruction, but if the address of the 
two-byte value is stored in a base register, pre- or post-indexing with an immediate offset 
could be used: 

LDRB R0, [addr, #0] 
LDRB R1, [addr, #1] 
ORR R0, R0, R1, LSL #8 

Extending the sign of a two-byte value is similar to the method given for single bytes 
shown above, but the shifts are only by 16 bits. 

To store a sixteen-bit quantity at an arbitrary byte position also requires three instructions: 

STRB R0, <address> 
MOV R0, R0, ROR #8 
STRB R0, <address>+1 

We use ROR #8 to obtain bits 8..15 in the least significant byte of R0. The number can then 
be restored if necessary using: 

MOV R0, R0, ROR #24 

Multiplication and division 

Operations on integers are many and varied. The group one instructions cover a good set 
of them, but an obvious omission is division. Also, although there is a MUL instruction, it is 
limited to results which fit in a single 32-bit register. Sometimes a 'double precision' 
multiply, with a 64-bit result, is needed. 

Below we present a 64-bit multiplication routine and a division procedure. First, though, 
let's look at the special case of multiplying a register by a constant. There are several 
simple cases we can spot immediately. Multiplication by a power of two is simply a matter 
of shifting the register left by that number of places. For example, to obtain R0*16, we 
would use: 

MOV R0, R0, ASL #4 

as 16=24. This will work just as well for a negative number as a positive one, as long as the 

result can be represented in 32-bit two's complement. Multiplication by 2n-1 or 2n+1 is just 
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as straightforward: 

RSB R0, R0, R0, ASL #n ;R0=R0*(2^n-1) 
ADD R0, R0, R0, ASL #n ;R0=R0*(2^n+1) 

So, to multiply R0 by 31 (=25-1) and again by 5 (=22+1) we would use:
 

RSB R0, R0, R0, ASL #5 
ADD R0, R0, R0, ASL #2 

Other numbers can be obtained by factorising the multiplier and performing several shift 
operations. For example, to multiply by 10 we would multiply by 2 then by 5: 

MOV R0, R0, R0, ASL #1 
ADD R0, R0, R0, ASL #2 

You can usually spot by inspection the optimum sequence of shift instructions to multiply 
by a small constant. 

Now we present a routine which multiplies one register by another and produces a 64-bit 
result in two other registers. The registers lhs and rhs are the two source operands and 
dest and dest+1 are the destination registers. We also require a register tmp for storing 
temporary results.  

The routine works by dividing the task into four separate multiplies. The biggest numbers 
that MUL can handle without overflow are two 16-bit operands. Thus if we split each of our 
32-bit registers into two halves, we have to perform:- 

lhs (low) * rhs (low) 
lhs (low) * rhs (high) 
lhs (high) * rhs (low) 
lhs (high) * rhs (high) 

These four products then have to be combined in the correct way to produce the final 
result. Here is the routine, with thanks to Acorn for permission to reproduce it. 

; 
; 32 X 32 bit multiply. 
; Source operands in lhs, rhs 
; result in dest, dest+1 
; tmp is a working register 
; 
.mul64 
MOV tmp, lhs, LSR #16 ;Get top 16 bits of lhs 
MOV dest+1, rhs, LSR #16 ;Get top 16 bits of rhs 
BIC lhs,lhs,tmp,LSL #16 ;Clear top 16 bits of lhs 
BIC rhs,rhs,dest+1,LSL#16 ;Clear top 16 bits of rhs 
MUL dest, lhs, rhs ;Bits 0-15 and 16-31 
MUL rhs, tmp, rhs ;Bits 16-47, part 1 
MUL lhs, dest+1, lhs ;Bits 16-47, part 2 
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MUL dest+1, tmp, dest+1 ;Bits 32-63 
ADDS lhs, rhs, lhs ;Add the two bits 16-47 
ADDCS dest+1, dest+1, #&10000 ;Add in carry from above 
ADDS dest, dest, lhs, LSL #16 ;Final bottom 32 bits 
ADC dest+1,dest+1,lhs,LSR#16 ;Final top 32 bits 

The worst times for the four MULs are 8 s-cycles each. This leads to an overal worst-case 
timing of 40 s-cycles for the whole routine, or 5us on an 8MHz ARM. 

The division routine we give is a 32-bit by 32-bit signed divide, leaving a 32-bit result and 
a 32-bit remainder. It uses an unsigned division routine to do most of the work. The 
algorithm for the unsigned divide works as follows. The quotient (div) and remainder 
(mod) are set to zero, and a count initialised to 32. The lhs is shifted until its first 1 bit 
occupies bit 31, or the count reaches zero. In the latter case, lhs was zero, so the routine 
returns straightaway.  

For the remaining iterations, the following occurs. The top bit of lhs is shifted into the 
bottom of mod. This forms a value from which a 'trial subtract' of the rhs is done. If this 
subtract would yield a negative result, mod is too small, so the next bit of lhs is shifted in 
and a 0 is shifted into the quotient. Otherwise, the subtraction is performed, and the 
remainder from this left in mod, and a 1 is shifted into the quotient. When the count is 
exhausted, the remainder from the division will be left in mod, and the quotient will be in 
div.  

In the signed routine, the sign of the result is the product of the signs of the operands (i.e. 
plus for same sign, minus for different) and the sign of the remainder is the sign of the left 
hand side. This ensures that the remainder always complies with the formula: 

a MOD b = a - b*(a DIV b) 

The routine is listed below: 

DIM org 200 
lhs = 0 
rhs = 1 
div = 2 
mod = 3 
divSgn = 4 
modSgn = 5 
count = 6 
sp = 13 
link = 14 
FOR pass=0 TO 2 STEP 2 
P%=org 
[ opt pass 
; 
;sDiv32. 32/32 bit signed division/remainder 
;Arguments in lhs and rhs. Uses the following registers: 
;divSgn, modSgn - The signs of the results 
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;count - bit count for main loop 
;div - holds lhs / rhs on exit, truncated result 
;mod - hold lhs mod rhs on exit 
; 
.sDiv32 
STMFD (sp)!, {link} 
EORS divSgn, lhs, rhs ;Get sign of div 
MOVS modSgn, lhs ;and of mod 
RSBMI lhs, lhs, #0 ;Make positive 
TEQ rhs, #0 ;Make rhs positive 
RSBMI rhs, rhs, #0 
BL uDiv32 ;Do the unsigned div 
TEQ divSgn, #0 ;Get correct signs 
RSBMI div, div, #0 
TEQ modSgn, #0 ;and of mod 
RSBMI mod, mod, #0 
; 
;This is just so the BASIC program can 
;read the results after the call 
; 
ADR count, result 
STMIA count, {div,mod} 
LDMFD (sp)!,{pc} ;Return 
; 
.uDiv32 
TEQ rhs, #0 ;Trap div by zero 
BEQ divErr 
MOV mod, #0 ;Init remainder 
MOV div, #0 ;and result 
MOV count, #32 ;Set up count 
.divLp1 
SUBS count, count, #1 ;Get first 1 bit of lhs 
MOVEQ pc, link ;into bit 31. Return if 0 
MOVS lhs, lhs, ASL #1 
BPL divLp1 
.divLp2 
MOVS lhs, lhs, ASL #1 ;Get next bit into... 
ADC mod, mod, mod ;mod for trial subtract 
CMP mod, rhs ;Can we subtract? 
SUBCS mod, mod, rhs ;Yes, so do 
ADC div, div, div ;Shift carry into result 
SUBS count, count, #1 ;Next loop 
BNE divLp2 
.divErr 
MOV pc, link ;Return 
; 
.result 
EQUD 0 
EQUD 0 
] 
NEXT pass 
@%=&0A0A 
FOR i%=1 TO 6 
A%=RND : B%=RND 
CALL sDiv32 
d%=!result : m%=result!4 
PRINTA%" DIV ";B%" = ";d%" (";A% DIV B%")" 
PRINTA%" MOD ";B%" = ";m%" (";A% MOD B%")" 
PRINT 
NEXT i% 
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ASCII to binary conversion 

Numbers are represented as printable characters for the benefit of us humans, and stored 
in binary for efficiency in the computer. Obviously routines are needed to convert between 
these representations. The two subroutines listed in this section perform conversion of an 
ASCII string of decimal digits to 32-bit signed binary, and vice versa. 

The ASCII-to-binary routine takes a pointer to a string and returns the number 
represented by the string, with the pointer pointing at the first non-decimal digit. 

DIM org 200 
REM Register assignments 
bin = 0 
sgn = 1 
ptr = 3 
ch = 4 
sp = 13 
link = 14 
cr = &0D 
FOR pass=0 TO 2 STEP 2 
P%=org 
[ opt pass 
.testAscToBin 
;Test routine for ascToBin 
; 
STMFD (sp)!,{link} ;Save return address 
ADR ptr,digits ;Set up pointer to the string 
BL ascToBin ;Convert it to binary in R0 
LDMFD (sp)!,{PC} ;Return with result 
; 
.digits 
EQUS "-123456" 
EQUB cr 
; 
;ascToBin. Read a string of ASCII digits at ptr, 
;optionally preceded by a + or - sign. Return the  
;signed binary number corresponding to this in bin. 
; 
.ascToBin 
STMFD (sp)!,{sgn,ch,link} 
MOV bin,#0 ;Init result 
MOV sgn,#0 ;Init sign to pos. 
LDRB ch,[ptr,#0] ;Get possible + or - 
CMP ch,#ASC"+" ;If +,just skip 
BEQ ascSkp 
CMP ch,#ASC"-" ;If -,negate sign and skip 
MVNEQ sgn,#0 
.ascSkp 
ADDEQ ptr,ptr,#1 ;Inc ptr if + or - 
.ascLp 
LDRB ch,[ptr,#0] ;Read digit 
SUB ch,ch,#ASC"0" ;Convert to binary 
CMP ch,#9 ;Make sure it is a digit 
BHI ascEnd ;If not,finish 
ADD bin,bin,bin ;Get bin*10. bin=bin*2 
ADD bin,bin,bin,ASL #2 ;bin=bin*5 
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ADD bin,bin,ch ;Add in this digit 
ADD ptr,ptr,#1 ;Next character 
B ascLp 
.ascEnd 
TEQ sgn,#0 ;If there was - sign 
RSBMI bin,bin,#0 ;Negate the result 
LDMFD (sp)!,{sgn,ch,pc} 
] 
NEXT pass 
PRINT "These should print the same:" 
PRINT $digits ' ;USRtestAscToBin 

Notice that we do not use a general purpose multiply to obtain bin*10. As this is bin*2*5, 
we can obtain the desired result using just a couple of ADDs. As with many of the routines 
in this book, the example above illustrates a technique rather than providing a fully -
fledged solution. It could be improved in a couple of ways, for example catching the 
situation where the number is too big, or no digits are read at all.  

To convert a number from binary into a string of ASCII characters, we can use the 
common divide and remainder method. At each stage the number is divided by 10. The 
remainder after the division is the next digit to print, and this is repeated until the quotient 
is zero. 

Using this method, the digits are obtained from the right, i.e. the least significant digit is 
calculated first. Generally we want them in the opposite order - the most significant digit 
first. To reverse the order of the digits, they are pushed on the stack as they are obtained. 
When conversion is complete, they are pulled off the stack. Because of the stack's 'last-in, 
first-out' property, the last digit pushed (the leftmost one) is the first one pulled back. 

buffSize=12 
DIM org 200,buffer buffSize 
REM Register allocations 
bin = 0 
ptr = 1 
sgn = 2 
lhs = 3 
rhs = 4 
div = 5 
mod = 6 
count = 7 
len = 8 
sp =13 
link = 14 
cr=&0D 
FOR pass=0 TO 2 STEP 2 
P%=org 
[ opt pass 
; 
;binToAscii - convert 32-bit two's complement 
;number into an ASCII string. 
;On entry,ptr holds the address of a buffer 
;area in which the ASCII is to be stored. 
;bin contains the binary number. 
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;On exit,ptr points to the first digit (or - 
;sign) of the ASCII string. bin = 0 
; 
.binToAscii 
STMFD (sp)!,{ptr,sgn,lhs,rhs,div,mod,link} 
MOV len,#0 ;Init number of digits 
MOV mod,#ASC"-" 
TEQ bin,#0 ;If -ve,record sign and negate 
STRMIB mod,[ptr],#1 
RSBMI bin,bin,#0 
.b2aLp 
MOV lhs,bin ;Get lhs and rhs for uDiv32 
MOV rhs,#10 
BL uDiv32 ;Get digit in mod,rest in div 
ADD mod,mod,#ASC"0" ;Convert digit to ASCII 
STMFD (sp)!,{mod} ;Save digit on the stack 
ADD len,len,#1 ;Inc string length 
MOVS bin,div ;If any more,get next digit 
BNE b2aLp 
; 
.b2aLp2 
LDMFD (sp)!,{mod} ;Get a digit 
STRB mod,[ptr],#1 ;Store it in the string 
SUBS len,len,#1 ;Decrement count 
BNE b2aLp2 
MOV mod,#cr ;End with a CR 
STRB mod,[ptr],#1 
LDMFD (sp)!,{ptr,sgn,lhs,rhs,div,mod,pc} 
; 
; 
.uDiv32 
STMFD (sp)!,{count,link} 
TEQ rhs,#0 ;Trap div by zero 
BEQ divErr 
MOV mod,#0 ;Init remainder 
MOV div,#0 ;and result 
MOV count,#32 ;Set up count 
.divLp1 
SUBS count,count,#1 ;Get first 1 bit of lhs 
MOVEQ pc,link ;into bit 31. Return if 0 
MOVS lhs,lhs,ASL #1 
BPL divLp1 
.divLp2 
MOVS lhs,lhs,ASL #1 ;Get next bit into... 
ADC mod,mod,mod ;mod for trial subtract 
CMP mod,rhs ;Can we subtract? 
SUBCS mod,mod,rhs ;Yes,so do 
ADC div,div,div ;Shift carry into result 
SUBS count,count,#1 ;Next loop 
BNE divLp2 
.divErr 
LDMFD (sp)!,{count,pc} 
] 
NEXT pass 
A%=-12345678 
B%=buffer 
CALL binToAscii 
PRINT"These should be the same:" 
PRINT;A% ' $buffer 
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As there is no quick way of doing a divide by 10, we use the uDiv32 routine given earlier, 
with lhs and rhs set-up appropriately. 

6.5 Floating point 

Many real-life quantities cannot be stored accurately in integers. Such quantities have 
fractional parts, which are lost in integer representations, or are simply too great in 
magnitude to be stored in an integer of 32 (or even 64) bits. 

Floating point representation is used to overcome these limitations of integers. Floating 
point, or FP, numbers are expressed in ASCII as, for example, 1.23, which has a fractional 
part of 0.23, or 2.345E6, which has a fractional part and an exponent. The exponent, the 
number after the E, is the power of ten by which the other part (2.345 in this example) 
must be multiplied to obtain the desired number. The 'other part' is called the mantissa. In 

this example, the number is 2.345*106 or 2345000. 

In binary, floating point numbers are also split into the mantissa and exponent. There are 
several possible formats of floating point number. For example, the size of the mantissa, 
which determines how many digits may be stored accurately, and the size of the exponent, 
determining the range of magnitudes which may be represented, both vary.  

Operations on floating point numbers tend to be quite involved. Even simple additions 
require several steps. For this reason, it is often just as efficient to write in a high-level 
language when many FP calculations are performed, and the advantage of using 
assembler is somewhat diminished. Also, most machines provide a library of floating 
point routines which is available to assembly language programs, so there is little point in 
duplicating them here.  

We will, however, describe a typical floating point format. In particular, the way in which 
BBC BASIC stores its floating point values is described. 

An FP number in BBC BASIC is represented as five bytes. Four bytes are the mantissa, and 
these contain the significant digits of the number. The mantissa has an imaginary binary 
point just before its most significant bit. This acts like a decimal point, and digits after the 
point represents successive negative powers of 2. For example, the number 0.101 
represents 1/2 + 0/4 + 1/8 or 5/8 or 0.625 in decimal.  

When stored, FP numbers are in normalised form. This means that the digit immediately 
after the point is a 1. A normalised 32-bit mantissa can therefore represent numbers in the 
range: 

0.10000000000000000000000000000000 to 
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0.11111111111111111111111111111111  

in binary which is 0.5 to 0.9999999998 in decimal. 

To represent numbers outside this range, a single byte exponent is used. This can be 
viewed as a shift count. It gives a count of how many places the point should be moved to 
the right to obtain the desired value. For example, to represent 1.5 in binary floating point, 
we would start with the binary value 1.1, i.e. 1 + 1/2. In normalised form, this is .11. To 
obtain the original value, we must move the point one place to the right. Thus the 
exponent is 1. 

We must be able to represent left movements of the point too, so that numbers smaller 
than 0.5 can be represented. Negative exponents represent left shifts of the point. For 
example, the binary of 0.25 (i.e. a quarter) is 0.01. In normalised form this is 0.1. To obtain 
this, the point is moved one place to the left, so the exponent is -1. 

Two's complement could be used to represent the exponent as a signed number, but is is 
more usual to employ an excess-128 format. In this format, 128 is added to the actual 
exponent. So, if the exponent was zero, representing no shift of the point from the 
normalised form, it would be stored as 128+0, or just 128. A negative exponent, e.g. -2, 
would be stored as 128-2, or 126. 

Using the excess-128 method, we can represent exponents in the range -128 (exponent 
stored as zero) to +127 (exponent stored as 255). Thus the smallest magnitude we can 

represent is 0.5/(2128), or 1.46936794E-39. The largest number 0.9999999998*(2127), or 
1.701411834E38  

So far, we have not mentioned negative mantissas. Obviously we need to represent 
negative numbers as well as positive ones. A common 'trick', and one which BBC BASIC 
uses, is to assume that the most significant bit is 1 (as numbers are always in normalised 
form) and use that bit position to store the sign bit: a zero for positive numbers, and 1 for 
negative numbers. 

We can sum up floating point representation by considering the contents of the five bytes 
used to store them in memory. 

byte 0 LS byte of mantissa

byte 1 Second LSB of mantissa

byte 2 Second MSB of mantissa

byte 3 MS byte of mantissa. Binary point just to the left of bit 7

byte 4 Exponent, excess-128 form
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Consider the number 1032.45. First, we find the exponent, i.e. by what power of two the 
number must be divided to obtain a result between 0.5 and 0.9999999. This is 11, as 

1032.45/(211)=0.504125976. The mantissa, in binary, is: 0.10000001 00001110 01100110 
01100110 or, in hex 81 0E 66 66. So, we would store the number as: 

This are the five bytes you would see if you executed the following in BASIC: 

DIM val 4 :REM Get five bytes 
|val=1032.45 :REM Poke the floating point value 
FOR i=0 TO 4 :REM Print the five bytes 
PRINT ~val?i 
NEXT i 

Having described BBC BASIC's floating point format in some detail, we now have to 
confess that it is not the same as that used by the ARM floating point instructions. It is, 
however, the easiest to 'play' with and understand. 

The ARM floating point instructions are extensions to the set described in Chapter Three. 
They follow the IEEE standard for floating point. The implementation of the instructions is 
initially by software emulation, but eventually a much faster hardware unit will be 
available to execute them. The full ARM FP instruction set and formats are described in 
Appendix B. 

6.6 Structured types 

Sometimes, we want to deal with a group of values instead of just single items. We have 
already seen one example of this - strings are groups, or arrays, of characters. Parameter 
blocks may also be considered a structured type. These correspond to records in Pascal, or 
structures in C.  

Array basics 

We define an array as a sequence of objects of the same type which may be accessed 
individually. An index or subscript is used to denote which item in an array is of interest 
to us. You have probably come across arrays in BASIC. The statement: 

DIM value%(100) 

byte 0 LSB = &66

byte 1 2rd LSB = &66

byte 2 2nd MSB = &0E

byte 3 MSB = &81 AND &7F = &01

byte 4 exponent = 11+128 = &8B
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allocates space for 101 integers, which are referred to as value%(0) to value%(100). The 
number in brackets is the subscript. In assembler, we use a similar technique. In one 
register, we hold the base address of the array. This is the address of the first item. In 
another register is the index. The ARM provides two operations on array items: you can 
load one into the processor, or store one in memory from the processor. 

Let's look at a concrete example. Suppose register R0 holds the base address of an array of 
four-byte integers, and R1 contains the subscript of the one we want to load. This 
instruction would be used: 

LDR R2, [R0, R1, LSL #2] 

Note that as R1 holds the index, or subscript, of the element, we need to multiply this by 
four (using the LSL #2) to obtain the actual offset. This is then added to the base address in 
R0, and the word at this address is loaded into R2. There is no ! at the end, so R0 is not 
affected by write-back. 

If the array was of byte-sized objects, the corresponding load operation would be: 

LDRB R2, [R0, R1] 

This time there is no scaling of the index, as each item in the array occupies only one byte.  

If you are accessing an array of objects which are some inconvenient size, you will need to 
scale the index into a byte offset before loading the item. Moreover, further adjustment 
might be needed to ensure that the load takes place on word boundaries. 

To illustrate the problem of loading odd-sized objects from arbitrary alignments, we give a 
routine below to load a five byte floating point value into two registers, mant (the 
mantissa) and exp (exponent). The number is stored in memory as a four-byte mantissa 
followed by a single -byte exponent. An array of these objects could use two words each, 
the first word holding the mantissa and the LSB of the second word storing the mantissa. 
It would then be a simple job to load two words from a word-aligned address, and mask 
out the unused part of the exponent word. 

Using two whole words to store five bytes is wasteful when many elements are used (e.g. 
an array of 5000 numbers would waste 15000 bytes), so we obviously have to store the 
numbers contiguously. It is quite likely, therefore, that the mantissa and exponent will be 
aligned in a way which makes simple LDR instructions insufficient to load the number into 
registers. 

Consider the value stored starting at address &4001: 
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Three bytes of the number are held in the three most significant bytes of one word; the last 
two bytes are stored at the start of the next word. 

The technique we will use is to load the two words which the value straddles, then shift 
the registers appropriately so that mant contains the four bytes of the mantissa in the 
correct order, and the LSB of exp contains the exponent byte. 

On entry to the code, base contains the base address of the array, and off holds the index 
(in elements rather than bytes). 

ADD off, off, off, LSL #2 ;offset=5*offset 
ADD base, base, off ;base=base+5*n 
AND off, base, #3 ;Get offset in bytes 
BIC base, base, #3 ;Get lower word address 
LDMIA base, {mant,exp} ;Load the two words 
MOVS off, off, LSL #3 ;Get offset in bits 
MOVNE mant, mant, LSR off ;Shift mantissa right 
RSBNE base, off, #32 ;Get shift for exponent 
ORRNE mant, mant, exp,LSL base ;OR in mantissa 
.part 
MOVNE exp, exp, LSR off ;Get exponent is LSB 
AND exp, exp, #&FF ;Zero high bytes of exp 

Notice we use LDMIA to load the two word. The code assumes that the register number of 
mant is lower than exp, so that the words are loaded in the correct order. 

The last four instructions are all conditional on the byte offset being non-zero. If it is zero, 
the value was on a word boundary, and no shifting is required.  

Arrays of strings 

We have already noted that a string is an array of characters. Sometimes, we want an array 
of strings, i.e. an array of character arrays. For example, the BASIC declaration: 

DIM name$(10) 

gives us an array of 11 strings, name$(0) to name$(10). How do we organise such a 

&4000 *****************
&4001 LSB of mantissa
&4002 2nd LSB of mantissa
&4003 2nd MSB of mantissa
&4004 MSB of mantissa
&4005 Exponent
&4006 *****************
&4007 *****************
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structure in assembly language? There are two solutions. If each of the strings is to have a 
fixed length, the easiest way is to store the strings contiguously in memory. Suppose we 
wanted ten strings of ten characters each. This would obviously occupy 100 bytes. If the 
base address of these bytes is stored in base, and the subscript of the string we want in 
sub, then this code would be used to calculate the address of the start of string sub: 

ADD base,base,sub,LSL #3 ;Add sub*8 
ADD base,base,sub,LSL #1 ;Add sub*2 

After these instructions, base would point to (old) base+10*sub, i.e. the start character of 
string number sub. 

Storing all the characters of every string can be wasteful if there are many strings and they 
can have widely varying lengths. For example, if a lot of the strings in an array contain no 
characters for a lot of the time, the storage used for them is wasted. The solution we 
present is to use an array of string information blocks instead of the actual characters.  

A string information block (SIB) is a structure which describes the address and length of a 
string. Unlike the string itself, it is a fixed length, so is more amenable to storing in an 
array. BASIC uses SIBs to describe its strings. When you DIM a string array in BASIC, the 
only storage allocated is for the appropriate number of SIBs. No character storage is 
allocated until you start assigning to the strings. 

The format of a BASIC SIB is:  

bytes 0 to 3 address of the string 

byte 4 current length of the string 

When you DIM an array, all entries have their length bytes set to zero. As soon as you 
assign something to the string, BASIC allocates some storage for it and fills in the address 
part. The way in which BASIC allocates storage for strings is interesting in its own right, 
and is described in sectionÊ6.7 

To illustrate how we might use an array of SIBs, the routine below takes a base address 
and a subscript, and prints the contents of that string. 

DIM org 200 
sub = 0 
base = 1 
len = 2 
p1 = 3 
p2 = 4 
argPtr = 9 : REM BASIC's pointer to CALL arguments 
WriteC = 0 
sp = 13 
link = 14 
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FOR pass=0 TO 2 STEP 2 
P%=org 
[ opt pass 
; 
;Print base$(sub) where base points to the start of 
;an array of five-byte block of the format: 
; 0..3 pointer to string 
; 4 length of string (see section 4.7) 
;and sub is the subscript 0..n of the desired 
;string. The SIB may be at any byte alignment. 
; 
.pStr 
;Get address of SIB = base+sub*5 
ADD base,base,sub,LSL #2 ;base=base+sub*4 
ADD base,base,sub ;base=base+sub*1 
LDRB len,[base,#4] ;Get string len 
TEQ len,#0 ;If zero,nothing to do 
MOVEQ pc,link 
; 
;Arbitrary alignment load of four-byte pointer into 
;p1. Address of pointer in base 
; 
AND sub,base,#3 ;Get offset in bytes 
BIC base,base,#3 ;Get lower word address 
LDMFD base,{p1,p2} ;Load the two words 
MOVS sub,sub,LSL #3 ;Get offset in bits 
MOVNE p1,p1,LSR sub ;Shift lower word 
RSBNE sub,sub,#32 ;Get shift for high word 
ORRNE p1,p1,p2,LSL sub ;ORR in the high word 
; 
;Now print the string. NB len > 0 so we can test at the 
;end of the loop 
; 
.pStrLp 
LDRB R0,[p1],#1 ;Load a character into R0 
SWI WriteC ;Print it 
SUBS len,len,#1 ;Decrememt the count 
BNE pStrLp ;Loop if more 
.endPStr 
MOV pc,link ;Return 
; 
;testPstr. This takes a subscipt in sub (r0) 
;and a BASIC string array CALL parameter 
;and prints the appropriate string 
; 
.testPstr 
STMFD (sp)!,{link} 
LDR base,[argPtr] ;Load the address of the 
BL pStr ;CALL parm. Print the string 
LDMFD (sp)!,{pc} 
] 
NEXT pass 
DIM a$(10) 
FOR i%=0 TO 10 
a$(i%)=STR$RND 
NEXT i% 
FOR i%=0 TO 10 
A%=i% 
PRINT"This should say "a$(i%)": "; 
CALL testPstr,a$(0) 

ARM Assembly Language Programming - Chapter 6 - Data Structures

25 of 36



PRINT 
NEXT i% 

Multi-dimensional arrays 

A single list of items is not always sufficient. It may be more natural to store items as a 
table of two or even more dimensions. A BASIC array declaration of two dimensions is: 

 

This allocates space for a matrix of 36 integers: 

We can use such arrays in assembly language by imagining the rows laid out end to end in 
memory. Thus the first six words of the array would hold t%(0,0) to t%(0,5). The next six 
would store t%(1,0) to t%(1,5) and so on. To calculate the address of t%(a,b) we use 
base+a*lim+b, where lim is the limit of the second subscript, which is 6 in this case. 

The routine below takes base, sub1 and sub2. It calculates the address of the required 
element, assuming each element is 4 bytes (e.g. an integer) and that there are 16 elements 
per row. 

ADD sub1, sub2, sub1, LSL #4 ;sub1=sub2+16*sub1 
ADD base, base, sub1, LSL #2 ;base=base+sub1*4 

Once base has been calculated, the usual instruction could be used to load the integer at 
that address. In the more general case, the number of elements per row would be stored in 
a register, and a general multiply used to multiply sub1 by this limit. 

Bit fields 

We end this discussion of the basic types of data by reverting to the lowest level of 
representation: the bit. We have seen how sequences of bits, usually in multiples of eight, 
may be used to represent characters, integers, pointers and floating point numbers. 
However, single bits may usefully store information too.  

One binary digit can represent two values: 0 or 1. Often this is all we need to distinguish 
between two events. A bit used to represent a choice such as yes/no, true/false, 
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success/failure is called a flag. We already know of several useful flags: the result flags in 
the status register. The V flag for example represents overflow/no overflow. 

It is common to find in many programs a set of flags which could be grouped together and 
stored in a single byte or word. Consider a text editor. There might be flags to indicate 
insert/overtype mode, justify/no justify mode, help displayed/no help, case 
sensitive/insensitive searches. Each of these would be assigned a bit in the flag byte. The 
value given to a flag is that of the bit in that position. Thus we might define the examples 
above as: 

insMode = &01 
juMode = &02 
hlpMode = &04 
snsMode = &08 

There are four main operations on flags: set, clear, invert and test. To set a flag, the ORR 
operation is used. For example, to set the insMode flag of register flags: 

ORR flags, flags, #insMode 

Clearing a flag is achieved using BIC, bit clear. To clear both hlpMode and snsMode: 

BIC flags, flags, #hlpMode OR snsMode 

To invert a flag we use the EOR operation. This is often called 'toggling a flag', because 
applying the operation repeatedly has the effect of switching the flag between the two 
values.  

To invert the juMode flag: 

EOR flags, flags, #juMode 

Finally, to test the state of a flag, we use TST. This performs an AND operation, and the 
result is zero if the flag is cleared, and non-zero if it is set: 

TST flags, #insMode 

tests the insert mode flag. If you test more than one flag in a single TST, the result is non-
zero if any of the flags are set, and zero if all of them are cleared. You can also use TEQ to 
see if all of a set of flags are set and the rest are cleared. For example,  

TEQ flags, #insMode OR juMode 

sets the Z flag if insMode and juMode are set and hlpMode and snsModer are cleared. 
Otherwise Z is cleared.  
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As 32 bits are held in a single word, arrays of flags can be stored very efficiently. To 
illustrate this, we show Byte magazine's well-known Sieve of Eratosthenes program. This 
benchmark is often used to test the speed of a few simple types of operation, for example 
when various compilers for a language are being compared. The purpose of the program 
is to find prime numbers using a technique attributed to the eponymous Greek 
mathematician. 

The Sieve technique works as follows. Start with an array of flags, one for each of the 
integers from 2 to the maximum prime to be found. All of the flags are set to 'true' initially, 
indicating that any number could be a prime. Go through the array looking for the next 
'true' bit. The number corresponding to this bit is prime, so output it. Then go through all 
of the multiples of this number, setting their bits to 'false' to eliminate them from the 
enquiry. Repeat this process till the end of the array.  

Byte's version of the Sieve algorithm is slightly different as it starts from the supposition 
that all even numbers (except for two) are non-prime, so they are not even included. For 
comparison, we give a BBC BASIC version of the algorithm first, then the ARM assembler 
one. The BASIC version is shown overleaf. 

Each flag is stored in a byte, and the storage for the array of size% bytes is obtained using 
a DIM statement. Notice that the program doesn't actually print the primes it discovers, 
because the idea of the benchmark is to test the speed of things like array accesses, not 
printing. The place in the program where the prime would be printed is shown in a REM. 

size% = 8190 
DIM flags% size% 
count% = 0 
FOR i% = 0 TO size% 
flags%?i% = TRUE 
NEXT i% 
FOR i% = 0 TO size% 
IF flags%?i% THEN 
prime% = i%+i%+3 : REM PRINT prime% 
k% = prime%+i% 
WHILE k% <= size% 
flags%?k% = FALSE 
k% += prime% 
ENDWHILE 
count% += 1 
ENDIF 
NEXT i% 
 
PRINT count% 

In the ARM assembler version, we are eight times more efficient in the storage of the flags, 
and use a single bit for each one. Thus 32 flags can be stored in each word of memory. The 
ARM version is shown below: 
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DIM org 2000 
REM Register allocations 
count = 0 
ptr = 1 
i = 2 
mask = 3 
base = 4 
prime = 5 
k = 6 
tmp = 7 
size = 8 
iter = 9 
link = 14 
SIZE = 8190 
iterations = 10 
FOR pass=0 TO 2 STEP 2 
P%=org 
[opt pass 
;Sieve of Eratosthenes in ARM assembler 
;The array of SIZE flags is stored 32 per word from 
;address 'theArray'. The zeroth element is stored at bit 
;0 of word 0,the 32nd element at bit 0 of word 1, and so 
;on. 'Base' is word-aligned 
; 
;Registers: 
; count holds the number of primes found 
; mask used as a bit mask to isolate the required flag 
; ptr used as a general pointer/offset into the array 
; i used as a counting register 
; size holds the value SIZE for comparisons 
; base holds the address of the start of the array 
; prime holds the current prime number 
; k holds the current entry being 'crossed out' 
; tmp is a temporary 
; iter holds the count of iterations 
; 
.sieve 
MOV iter,#iterations 
.mainLoop 
ADR base,theArray 
MVN mask,#0 ;Get &FFFFFFFF, ie all bits set 
MOV size,#SIZE AND &FF;Load size with SIZE in 2 steps 
ORR size,size,#SIZE AND &FF00 
; 
;Initialise the array to all 'true'. First store the 
;complete words (SIZE DIV 32 of them), then the partial 
;word at the end 
; 
MOV i,#SIZE DIV 32 ;Loop counter = number of words 
MOV ptr,base ;Start address for initing array 
.initLp 
STR mask,[ptr],#4 ;Store a word and update pointer 
SUBS i,i,#1 ;Next word 
BNE initLp 
LDR tmp,[ptr] ;Get last, incomplete word 
MOV mask,mask,LSR #32-SIZE MOD 32 ;Clear top bits 
ORR tmp,tmp,mask ;Set the bottom bits 
STR tmp,[ptr] ;Store it back 
MOV i,#0 ;Init count for main loop 
MOV count,#0 
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.lp 
MOV ptr,i,LSR #5 ;Get word offset for this bit 
MOV mask,#1 ;Get mask for this bit 
AND tmp,i,#31 ;Bit no. = i MOD 32 
MOV mask,mask,LSL tmp 
LDR tmp,[base,ptr,LSL #2] ;Get the word 
ANDS tmp,tmp,mask ;See if bit is set 
BEQ nextLp ;No so skip 
ADD prime,i,i ;Get prime 
ADD prime,prime,#3 
ADD k,i,prime ;Get intial k 
ADD count,count,#1 ;Increment count 
.while 
CMP k,size ;While k<=size 
BGT nextLp 
MOV ptr,k,LSR #5 ;Get word for flags[k] 
MOV mask,#1 
AND tmp,k,#31 
MOV mask,mask,LSL tmp 
LDR tmp,[base,ptr,LSL #2] 
BIC tmp,tmp,mask ;Clear this bit 
STR tmp,[base,ptr,LSL #2] ;Store it back 
ADD k,k,prime ;Do next one 
B while 
.nextLp 
ADD i,i,#1 ;Next i 
CMP i,size 
BLE lp 
SUBS iter,iter,#1 
BNE mainLoop 
MOV pc,link ;Return after iter iterations. 
; 
.theArray 
] 
REM Reserve the bytes for the array 
P%=P%+SIZE/8 
NEXT 
REM Time 10 iterations, as in Byte 
TIME=0 
primes = USR sieve 
T%=TIME 
PRINT"It took ";T%/100" seconds for ";iterations" loops." 

Notice the sequence which obtains the mask and offset for a given bit in the array occurs 
twice. The first step is to find the word offset of the word which contains the desired 
element. There are 32 flags in a word, so the word containing flag i is i DIV 32 words 
from the start of the array. The division by 32 is performed using a right shift by five bits. 
Next, the position of the desired flag within the word is needed. This is simply i MOD 32, 
which is obtained using i AND 31 in the assembler. A mask, which starts off at bit 0, is 
shifted by (i MOD 32) places to the left to obtain the correct mask. Finally, to load the word 
containing the flag, a scaled indexed load of the form: 

LDR reg,[base,offset,LSL #2] 

is used, the LSL #2 scaling the word offset which we calculated into a (word-aligned) byte 
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address. 

The difference in the speed of the BASIC and assembler versions is quite dramatic. BASIC 
takes 6.72 seconds to perform one iteration of the program. Assembler takes 0.73 seconds 
to perform ten of them, which makes it over 90 times faster. A version in assembler which 
more closely mirrors the BASIC version, with one byte per flag, takes 0.44 seconds for ten 
iterations. 

6.7 Memory allocation 

Some of the examples of ARM assembler we have already given rely on memory being 
available to store data. For example, strings are generally referenced using a pointer to the 
characters in memory, and arrays are treated in the same way. In a program that 
manipulates a lot of data, some way of managing memory must be provided. For example, 
a text editor needs to be able to allocate space to hold the text that the user types, and the 
BASIC interpreter needs to allocate space for program lines, variables etc. 

The facilities provided by the operating system for the allocation of memory vary greatly 
from machine to machine. The UNIX operating system, for example, provides some useful 
'library' routines for allocating a given number of bytes, freeing an area so that it can be re -
used later, and extending an area already allocated. On the other hand, a simple operating 
system such as the environment provided by an ARM co-processor connected to a BBC 
Micro might just hand the program a large chunk of memory and leave the management 
of it entirely to the program. 

In this section, we illustrate a simple way in which memory allocation may be 
implemented, assuming that the program is just handed a large 'pool' of space by the 
operating system. 

Linked lists 

In memory allocation, a structure known as the linked list is often found. A linked list of 
objects can be regarded as an array where the elements are not contiguous in memory. 
Instead, each element contains explicit information about the address of the next element. 
This information is known as the link field of the element. The last item in the list usually 
has a special link field value, e.g. zero, to mark it as the end, or may contain a link back to 
the first element (this is called a circular linked list). 

Linked lists can be illustrated pictorially using boxes and arrows. For example, consider a 
linked list of items which contain two words of information in addition to the link. A list 
of them might be drawn like this: 
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The 'head' is a pointer to the first element. This could be stored in a memory location, or in 
a register in the ARM. The first field in each element is the link pointer, and this is 
followed by two data words. The pointer for the third element does not point anywhere; it 
marks the end of the list. 

There are many operations that can be performed on linked lists, and large sections of 
many books on algorithms and data structures are devoted to them. However, we are only 
interested in a couple of simple operations here: removing an item from the front of the 
list, and adding a new item to the front of the list. 

To remove an item from the front, we just need to replace the head pointer with the link 
from the first item. When this is done, the list looks like this: 

 

Notice that item number one is now inaccessible through the list, so in order to use it, a 
pointer to it must be 'remembered' somewhere. Notice also that if the item removed was 
the last one, the head pointer would be given the end of list value, and would not point at 
anything. This is known as an empty list. 

To insert an item at the front of the list, two actions are required. First, the head pointer is 
copied into the link field of the item to be inserted. Then, the head pointer is changed to 
point at this new item. 

With this simple level of understanding of linked lists, we can now describe how they are 
used in memory allocation schemes. 

String allocation 

The allocation scheme presented is very similar to the one BBC BASIC uses to allocate 
space for its string variables, and so is suitable for that type of application. Operations 
which a string allocator must perform are: 

Allocate an area. Given a length in bytes, return a pointer to an area where this number of 
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bytes may be stored. 

Free an area. Given a length in bytes, and a pointer, free the area of memory so that it can 
be used by another string when required. 

Strings in BBC BASIC may be between 0 and 255 bytes long. The allocator always works in 
terms of complete words, so strings may occupy between 0 and 64 words. Recall from the 
discussion of string information blocks earlier that the length is stored along with the 
address of the characters which make up the string. From this length byte, the number of 
words required to hold the string can be deduced: 

words = (len-1) DIV 4 + 1 

The area of memory BASIC uses for its string storage is called the heap. A word-aligned 
pointer, which we will call varTop, holds the address of the next free byte on the heap. The 
upper limit on the heap is set by the stack, which grows down from the top of memory. 

A very simple memory allocation scheme using the heap would work as follows. To 
allocate n bytes, calculate how many words are needed, then add this to varTop. If this is 
greater than the stack pointer, SP, give a 'No room' error. Otherwise, return the old value of 
varTop as the pointer to free space, and update varTop by the appropriate number of bytes. 
To free space, do nothing.  

This scheme is clearly doomed to failure in the long run, because memory can never be 
freed, and so eventually varTop could reach the stack and a 'No room' error be generated. 
To solve this, BASIC has a way of 'giving back' storage used by strings. There are 64 linked 
lists, one for each possible number of words that a string can occupy. When a request for n 
bytes is made, a check is made on the appropriate linked list. If this is not empty, the 
address of the first item in the list is returned, and this is removed from the list. If the list is 
empty, the storage is taken from varTop as described above. To free n bytes, the area being 
freed is simply added to the front of the appropriate linked list. 

The algorithms for allocate, free and initialise are shown below in BASIC. 

DEF PROCinit 
EMPTY = 0 
DIM list(64) 
FOR i=1 TO 64 
list(i) =EMPTY 
NEXT i 
varTop = <initial value> 
ENDPROC 
DEF FNallocate(n) 
IF n=0 THEN =0 
words = (n-1) DIV 4 + 1 
IF list(words) <> EMPTY THEN 
addr = list(words) 
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list(words) = !list(words) 
ELSE 
IF varTop + 4*words > SP THEN ERROR 0,"No room" 
addr = varTop 
varTop += 4*words 
ENDIF 
= addr 
DEF PROCfree(n,addr) 
IF n=0 THEN ENDPROC 
words = (n-1) DIV 4 + 1 
!addr = list(words) 
list(words) = addr 
ENDPROC 

The ARM assembler versions of these routines rely on a register called workSpace, which 
always contains the address of the start of a fixed workspace area. In this example, the first 
word of workSpace holds the current value of varTop, and the next 64 words are the 
pointers to the free lists. Another register, heapLimit, is assumed to always hold the upper 
memory limit that the allocater can use. Here are the ARM versions of the three routines. 

heapSize = 1000 
DIM org 600,heap heapSize-1 
addr = 0 
n = 1 
offset = 2 
words = 3 
tmp = 4 
heapLimit = 5 
workSpace = 6 
sp = 13 
link = 14 
NULL = 0 
FOR pass=0 TO 2 STEP 2 
P%=org 
[ opt pass 
;Init. Intialise the memory allocation system 
;It initialises varTop and sets the 64 linked list 
;pointers to 'NULL' 
.init 
STMFD (sp)!,{link} 
ADR workSpace,ws ;Init workspace pointer 
BL getVarTop ;Get varTop in tmp. 
STR tmp,[workSpace] ;Save it 
MOV tmp,#NULL ;Init the pointers 
MOV offset,#64 ;Word offset into workSpace 
.initLp 
STR tmp,[workSpace,offset,LSL #2] 
SUBS offset,offset,#1 
BNE initLp 
LDMFD (sp)!,{PC} ;Return 
; 
;Alloc. Allocate n bytes, returning address of 
;memory in addr, or EMPTY if no room 
.alloc 
SUBS words,n,#1 ;Return immediately for n=0 
MOVMI addr,#NULL 
MOVMI PC,link 
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MOV words,words,LSR #2 ;Divide by four 
ADD words,words,#1 ;Plus one 
;Get pointer for this list 
LDR addr,[workSpace,words,LSL#2] 
CMP addr,#NULL ;Is it empty? 
LDRNE tmp,[addr] ;No, so unlink 
STRNE tmp,[workSpace,words,LSL#2] 
MOVNE PC,link ;And return 
;Empty list so allocate from varTop 
LDR addr,[workSpace] 
ADD tmp,addr,words,LSL #2 ;Check for no room 
CMP tmp,heapLimit 
STRLT tmp,[workSpace] ;Update vartop and return 
MOVGE addr,#NULL ;Return NULL if no room 
MOV PC,link 
; 
;free. Take a size (in n) and address (in addr) 
;of a string, and link it into the appropriate 
;free list. 
.free 
SUBS words,n,#1 ;Return if for n=0 
MOVMI PC,link 
MOV words,words,LSR #2 ;Divide by four 
ADD words,words,#1 ;Plus one 
;Get current head pointer for this size 
LDR tmp,[workSpace,words,LSL #2] 
STR tmp,[addr] ;Store it in new block 
;Update head to point to new block 
STR addr,[workSpace,words,LSL #2] 
MOV PC,link ;Return 
; 
;Set tmp to point to 'heap' area 
;and set up upper limit of heap 
.getVarTop 
ADR tmp,heap 
ADD heapLimit,tmp,#heapSize 
MOV PC,link 
; 
.ws EQUD 0 ;Slot for varTop pointer 
] 
REM Reserve space for 64 pointers = 256 bytes 
P%=P%+256 
NEXT pass 

The way in which varTop is initialised depends on the system. In BASIC, for example, 
varTop is initialised to the value of LOMEM whenever a CLEAR-type operation is performed. 
LOMEM itself is usually set to the top of the BASIC program, but can be altered using an 
assignment. These three routines show that a relatively small amount of code can perform 
quite sophisticated memory allocation. 

Summary 

We have seen that most types of data may be loaded into ARM registers and processed 
using short sequences of instructions. Simple items may be stored along with the program, 
but only if the program is executing in RAM. ROM programs may only access fixed tables 
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of data within the program area. Other data must be accessed through pointer registers, 
using memory allocated by the operating system. Data should be accessed in a position 
independent manner. 
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